• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 41,314
Next 10 →

Training Products of Experts by Minimizing Contrastive Divergence

by Geoffrey E. Hinton , 2002
"... It is possible to combine multiple latent-variable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values of the l ..."
Abstract - Cited by 850 (75 self) - Add to MetaCart
It is possible to combine multiple latent-variable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values

Evolving Artificial Neural Networks

by Xin Yao , 1999
"... This paper: 1) reviews different combinations between ANN's and evolutionary algorithms (EA's), including using EA's to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA's; ..."
Abstract - Cited by 574 (6 self) - Add to MetaCart
's; and 3) points out possible future research directions. It is shown, through a considerably large literature review, that combinations between ANN's and EA's can lead to significantly better intelligent systems than relying on ANN's or EA's alone

Boosting a Weak Learning Algorithm By Majority

by Yoav Freund , 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract - Cited by 516 (16 self) - Add to MetaCart
upper bounds known today. We show that the number of hypotheses that are combined by our algorithm is the smallest number possible. Other outcomes of our analysis are results regarding the representational power of threshold circuits, the relation between learnability and compression, and a method

Approximation by Superpositions of a Sigmoidal Function

by G. Cybenko , 1989
"... In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate fun ..."
Abstract - Cited by 1248 (2 self) - Add to MetaCart
In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate

A Survey of Program Slicing Techniques

by F. Tip - JOURNAL OF PROGRAMMING LANGUAGES , 1995
"... A program slice consists of the parts of a program that (potentially) affect the values computed at some point of interest, referred to as a slicing criterion. The task of computing program slices is called program slicing. The original definition of a program slice was presented by Weiser in 197 ..."
Abstract - Cited by 790 (10 self) - Add to MetaCart
and efficiency. Moreover, the possibilities for combining solutions for different features are investigated....

The Quickhull algorithm for convex hulls

by C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa - ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE , 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull Algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract - Cited by 713 (0 self) - Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull Algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the randomized, incremental

Photobook: Content-Based Manipulation of Image Databases

by A. Pentland, R. W. Picard, S. Sclaroff , 1995
"... We describe the Photobook system, which is a set of interactive tools for browsing and searching images and image sequences. These query tools differ from those used in standard image databases in that they make direct use of the image content rather than relying on text annotations. Direct search o ..."
Abstract - Cited by 542 (0 self) - Add to MetaCart
on image content is made possible by use of semantics-preserving image compression, which reduces images to a small set of perceptually-significant coefficients. We describe three types of Photobook descriptions in detail: one that allows search based on appearance, one that uses 2-D shape, and a third

Markov Logic Networks

by Matthew Richardson, Pedro Domingos - MACHINE LEARNING , 2006
"... We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract - Cited by 816 (39 self) - Add to MetaCart
We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects

Fast and robust fixed-point algorithms for independent component analysis

by Aapo Hyvärinen - IEEE TRANS. NEURAL NETW , 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract - Cited by 884 (34 self) - Add to MetaCart
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s

Contour Tracking By Stochastic Propagation of Conditional Density

by Michael Isard, Andrew Blake , 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract - Cited by 661 (23 self) - Add to MetaCart
Density Propagation over time. It uses `factored sampling', a method previously applied to interpretation of static images, in which the distribution of possible interpretations is represented by a randomly generated set of representatives. The Condensation algorithm combines factored sampling
Next 10 →
Results 1 - 10 of 41,314
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University