Results 1 - 10
of
24,274
Poisson Surface Reconstruction
, 2006
"... We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function ..."
Abstract
-
Cited by 369 (5 self)
- Add to MetaCart
We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis
Topology Control of Multihop Wireless Networks using Transmit Power Adjustment
, 2000
"... We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints- connectivity and biconnectivity, and one optimization objective- ..."
Abstract
-
Cited by 688 (3 self)
- Add to MetaCart
We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints- connectivity and biconnectivity, and one optimization objective
An inventory for measuring depression
- Archives of General Psychiatry
, 1961
"... The difficulties inherent in obtaining con-sistent and adequate diagnoses for the pur-poses of research and therapy have been pointed out by a number of authors. Pasamanick12 in a recent article viewed the low interclinician agreement on diagnosis as an indictment of the present state of psychiatry ..."
Abstract
-
Cited by 1195 (0 self)
- Add to MetaCart
not depend on the clinical diagnosis, but had to formulate a method of defining depression that would be reliable and valid. The available instruments were not con-sidered adequate for our purposes. The Min-nesota Multiphasic Personality Inventory, for example, was not specifically designed Submitted
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 624 (12 self)
- Add to MetaCart
the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order
Lucas-Kanade 20 Years On: A Unifying Framework: Part 3
- International Journal of Computer Vision
, 2002
"... Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms hav ..."
Abstract
-
Cited by 706 (30 self)
- Add to MetaCart
have been proposed and a variety of extensions have been made to the original formulation. We present an overview of image alignment, describing most of the algorithms in a consistent framework. We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently proposed. We
Quantum complexity theory
- in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract
-
Cited by 574 (5 self)
- Add to MetaCart
be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need
Multiple kernel learning, conic duality, and the SMO algorithm
- In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract
-
Cited by 445 (31 self)
- Add to MetaCart
While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed
A framework for learning predictive structures from multiple tasks and unlabeled data
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods ar ..."
Abstract
-
Cited by 443 (3 self)
- Add to MetaCart
are proposed, at the current stage, we still don’t have a complete understanding of their effectiveness. This paper investigates a closely related problem, which leads to a novel approach to semi-supervised learning. Specifically we consider learning predictive structures on hypothesis spaces (that is, what
Policy gradient methods for reinforcement learning with function approximation.
- In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract
-
Cited by 439 (20 self)
- Add to MetaCart
;actor-critic" or policy-iteration architectures (e.g., Policy Gradient Theorem We consider the standard reinforcement learning framework (see, e.g., Sutton and Barto, 1998), in which a learning agent interacts with a Markov decision process (MDP). The state, action, and reward at each time t ∈ {0, 1, 2
Inference in Linear Time Series Models with Some Unit Roots,”
- Econometrica
, 1990
"... This paper considers estimation and hypothesis testing in linear time series models when some or all of the variables have unit roots. Our motivating example is a vector autoregression with some unit roots in the companion matrix, which might include polynomials in time as regressors. In the genera ..."
Abstract
-
Cited by 390 (14 self)
- Add to MetaCart
This paper considers estimation and hypothesis testing in linear time series models when some or all of the variables have unit roots. Our motivating example is a vector autoregression with some unit roots in the companion matrix, which might include polynomials in time as regressors
Results 1 - 10
of
24,274