Results 1  10
of
171,627
A theory of timed automata
, 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract

Cited by 2651 (32 self)
 Add to MetaCart
using finitely many realvalued clock variables. Automated analysis of timed automata relies on the construction of a finite quotient of the infinite space of clock valuations. Over the years, the formalism has been extensively studied leading to many results establishing connections to circuits
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 512 (2 self)
 Add to MetaCart
~ (1, and then the result is classical. A simple proof appears in EnriquesChisini [E, vol. 3, chap. 3], based on analyzing the totality of coverings of p1 of degree n, with a fixed number d of ordinary branch points. This method has been extended to char. p by William Fulton [F], using specializations
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We present here a selfcontained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e, nonunitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a waveletlike transform that maps integers to integers. 1.
Superconformal field theory on threebranes at a CalabiYau singularity
 Nucl. Phys. B
, 1998
"... Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that ..."
Abstract

Cited by 690 (37 self)
 Add to MetaCart
Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory which we describe in detail.
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instantons'. The same equations may be
Short signatures from the Weil pairing
, 2001
"... Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signa ..."
Abstract

Cited by 743 (28 self)
 Add to MetaCart
Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a lowbandwidth channel. 1
Results 1  10
of
171,627