Results 1 - 10
of
21,361
Additive Logistic Regression: a Statistical View of Boosting
- Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract
-
Cited by 1750 (25 self)
- Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input
On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
, 2001
"... We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is i ..."
Abstract
-
Cited by 520 (8 self)
- Add to MetaCart
We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size
Motivational and self-regulated learning components of classroom academic performance
- Journal of Educational Psychology
, 1990
"... A correlational study examined relationships between motivational orientation, self-regulated learning, and classroom academic performance for 173 seventh graders from eight science and seven English classes. A self-report measure of student self-efficacy, intrinsic value, test anxiety, self-regulat ..."
Abstract
-
Cited by 679 (6 self)
- Add to MetaCart
-regulation, and use of learning strategies was administered, and performance data were obtained from work on classroom assignments. Self-efficacy and intrinsic value were positively related to cognitive engagement and performance. Regression analyses revealed that, depending on the outcome measure, self
Human Performance Regression Testing
"... Abstract—As software systems evolve, new interface features such as keyboard shortcuts and toolbars are introduced. While it is common to regression test the new features for functional correctness, there has been less focus on systematic regression testing for usability, due to the effort and time ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
involved in human studies. Cognitive modeling tools such as CogTool provide some help by computing predictions of user performance, but they still require manual effort to describe the user interface and tasks, limiting regression testing efforts. In recent work, we developed CogTool-Helper to reduce
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract
-
Cited by 727 (18 self)
- Add to MetaCart
boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract
-
Cited by 948 (62 self)
- Add to MetaCart
Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized
Mean shift: A robust approach toward feature space analysis
- In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract
-
Cited by 2395 (37 self)
- Add to MetaCart
the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and thus its utility in detecting the modes of the density. The equivalence of the mean shift procedure to the Nadaraya–Watson estimator from kernel regression and the robust M
Reasoning the fast and frugal way: Models of bounded rationality.
- Psychological Review,
, 1996
"... Humans and animals make inferences about the world under limited time and knowledge. In contrast, many models of rational inference treat the mind as a Laplacean Demon, equipped with unlimited time, knowledge, and computational might. Following H. Simon's notion of satisncing, the authors have ..."
Abstract
-
Cited by 611 (30 self)
- Add to MetaCart
between the satisncing "Take The Best" algorithm and various "rational" inference procedures (e.g., multiple regression). The Take The Best algorithm matched or outperformed all competitors in inferential speed and accuracy. This result is an existence proof that cognitive mechanisms
Performance Regression Testing of Concurrent Classes
"... Developers of thread-safe classes struggle with two oppos-ing goals. The class must be correct, which requires syn-chronizing concurrent accesses, and the class should pro-vide reasonable performance, which is difficult to realize in the presence of unnecessary synchronization. Validating the perfor ..."
Abstract
-
Cited by 4 (2 self)
- Add to MetaCart
Gun, an automatic performance regression testing technique for thread-safe classes. The key idea is to generate multi-threaded performance tests and to com-pare two versions of a class with each other. The analysis notifies developers when changing a thread-safe class signif-icantly influences the performance
Robust face recognition via sparse representation
- IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract
-
Cited by 936 (40 self)
- Add to MetaCart
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse
Results 1 - 10
of
21,361