Results 1  10
of
25,604
Parallel Networks that Learn to Pronounce English Text
 COMPLEX SYSTEMS
, 1987
"... This paper describes NETtalk, a class of massivelyparallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract

Cited by 549 (5 self)
 Add to MetaCart
is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced practice is more effective for longterm retention than massed practice. Network models can be constructed that have the same performance and learning characteristics on a particular
Text Categorization with Support Vector Machines: Learning with Many Relevant Features
, 1998
"... This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substan ..."
Abstract

Cited by 2303 (9 self)
 Add to MetaCart
This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 892 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 730 (21 self)
 Add to MetaCart
approaches such as the DavisPutnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, Nqueens, and Boolean induction. General application strategies and limitations of the approach are also
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 628 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Making LargeScale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 1861 (17 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Inductive learning algorithms and representations for text categorization,”
 in Proceedings of the International Conference on Information and Knowledge Management,
, 1998
"... ABSTRACT Text categorization the assignment of natural language texts to one or more predefined categories based on their content is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text ..."
Abstract

Cited by 652 (8 self)
 Add to MetaCart
ABSTRACT Text categorization the assignment of natural language texts to one or more predefined categories based on their content is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text
Next century challenges: Scalable coordination in sensor networks
, 1999
"... Networked sensorsthose that coordinate amongst themselves to achieve a larger sensing taskwill revolutionize information gathering and processing both in urban environments and in inhospitable terrain. The sheer numbers of these sensors and the expected dynamics in these environments present uniq ..."
Abstract

Cited by 1116 (37 self)
 Add to MetaCart
Networked sensorsthose that coordinate amongst themselves to achieve a larger sensing taskwill revolutionize information gathering and processing both in urban environments and in inhospitable terrain. The sheer numbers of these sensors and the expected dynamics in these environments present
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
A socialcognitive approach to motivation and personality
 Psychological Review
, 1988
"... Past work has documented and described major patterns of adaptive and maladaptive behavior: the masteryoriented and the helpless patterns. In this article, we present a researchbased model that accounts for these patterns in terms of underlying psychological processes. The model specifies how indi ..."
Abstract

Cited by 964 (20 self)
 Add to MetaCart
individuals ' implicit theories orient them toward particular goals and how these goals set up the different patterns. Indeed, we show how each feature (cognitive, affective, and behavioral) of the adaptive and maladaptive patterns can be seen to follow directly from different goals. We then exam
Results 1  10
of
25,604