Results 1  10
of
1,189
All Pairs Almost Shortest Paths
 SIAM Journal on Computing
, 1996
"... Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time ..."
Abstract

Cited by 91 (7 self)
 Add to MetaCart
Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time algorithm APASP 2 for computing all distances in G with an additive onesided error of at most 2. The algorithm APASP 2 is simple, easy to implement, and faster than the fastest known matrix multiplication algorithm. Furthermore, for every even k ? 2, we describe an g) time algorithm APASP k for computing all distances in G with an additive onesided error of at most k.
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach (Extended Abstract)
 WG 2001, LNCS
, 2001
"... In this paper we show that a very simple and efficient approach can be used to solve the all pairs almost shortest path problem on the class of weakly chordal graphs and its different subclasses. Moreover, this approach works well also on graphs with small size of largest induced cycle and gives a u ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
In this paper we show that a very simple and efficient approach can be used to solve the all pairs almost shortest path problem on the class of weakly chordal graphs and its different subclasses. Moreover, this approach works well also on graphs with small size of largest induced cycle and gives a
Fibonacci Heaps and Their Uses in Improved Network optimization algorithms
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized tim ..."
Abstract

Cited by 739 (18 self)
 Add to MetaCart
in the problem graph: ( 1) O(n log n + m) for the singlesource shortest path problem with nonnegative edge lengths, improved from O(m logfmh+2)n); (2) O(n*log n + nm) for the allpairs shortest path problem, improved from O(nm lo&,,,+2,n); (3) O(n*logn + nm) for the assignment problem (weighted bipartite
AllPairs Shortest Paths and the Essential Subgraph
, 1995
"... The essential subgraph H of a weighted graph or digraph G contains an edge (v, w) if that edge is uniquely the leastcost path between its vertices. Let s denote the number of edges of H. This paper presents an algorithm for solving allpairs shortest paths on G that requires O(ns + n 2 log n) wor ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
The essential subgraph H of a weighted graph or digraph G contains an edge (v, w) if that edge is uniquely the leastcost path between its vertices. Let s denote the number of edges of H. This paper presents an algorithm for solving allpairs shortest paths on G that requires O(ns + n 2 log n
Distributed Optimization by Ant Colonies
, 1991
"... Ants colonies exhibit very interesting behaviours: even if a single ant only has simple capabilities, the behaviour of a whole ant colony is highly structured. This is the result of coordinated interactions. But, as communication possibilities among ants are very limited, interactions must be based ..."
Abstract

Cited by 332 (22 self)
 Add to MetaCart
of interest is how almost blind animals manage to establish shortest route paths from their colony to feeding sources and back. In the case of ants, the media used to communicate among individuals information regarding paths and used to decide where to go consists of pheromone trails. A moving ant lays some
Optimal paths for a car that goes both forwards and backwards
 PACIFIC JOURNAL OF MATHEMATICS
, 1990
"... The path taken by a car with a given minimum turning radius has a lower bound on its radius of curvature at each point, but the path has cusps if the car shifts into or out of reverse gear. What is the shortest such path a car can travel between two points if its starting and ending directions are s ..."
Abstract

Cited by 279 (0 self)
 Add to MetaCart
are specified? One need consider only paths with at most 2 cusps or reversals. We give a set of paths which is sufficient in the sense that it always contains a shortest path and small in the sense that there are at most 68, but usually many fewer paths in the set for any pair of endpoints and directions. We
All Pairs Shortest Paths in weighted directed graphs  exact and almost exact algorithms
, 1998
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small abso ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small
On the exponent of the all pairs shortest path problem
"... The upper bound on the exponent, ω, of matrix multiplication over a ring that was three in 1968 has decreased several times and since 1986 it has been 2.376. On the other hand, the exponent of the algorithms known for the all pairs shortest path problem has stayed at three all these years even for t ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
The upper bound on the exponent, ω, of matrix multiplication over a ring that was three in 1968 has decreased several times and since 1986 it has been 2.376. On the other hand, the exponent of the algorithms known for the all pairs shortest path problem has stayed at three all these years even
Results 1  10
of
1,189