Results 1  10
of
181,736
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse
Metrics and norms used for obtaining sparse solutions to underdetermined Systems of Linear Equations
, 2014
"... This paper focuses on defining a measure, appropriate for obtaining optimally sparse solutions to underdetermined systems of linear equations.1 The general idea is the extension of metrics in ndimensional spaces via the Cartesian product of metric spaces. 1 ..."
Abstract
 Add to MetaCart
This paper focuses on defining a measure, appropriate for obtaining optimally sparse solutions to underdetermined systems of linear equations.1 The general idea is the extension of metrics in ndimensional spaces via the Cartesian product of metric spaces. 1
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
 PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract

Cited by 1772 (10 self)
 Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LSA), is presented and used to successfully simulate such learning and several other psycholinguistic phenomena. By inducing global knowledge indirectly from local cooccurrence data in a large body of representative text, LSA acquired knowledge about the full vocabulary of English at a comparable rate to schoolchildren. LSA uses no prior linguistic or perceptual similarity knowledge; it is based solely on a general mathematical learning method that achieves powerful inductive effects by extracting the right number of dimensions (e.g., 300) to represent objects and contexts. Relations to other theories, phenomena, and problems are sketched.
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
, 2004
"... In this paper, we develop a robust uncertainty principle for finite signals in C N which states that for nearly all choices T, Ω ⊂ {0,..., N − 1} such that T  + Ω  ≍ (log N) −1/2 · N, there is no signal f supported on T whose discrete Fourier transform ˆ f is supported on Ω. In fact, we can mak ..."
Abstract

Cited by 180 (17 self)
 Add to MetaCart
on finding the correct uncertainty relation or the optimally sparse solution for nearly all subsets but not necessarily all of them, and allows to considerably sharpen previously known results [9, 10]. In fact, we show that the fraction of sets (T, Ω) for which the above properties do not hold can be upper
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 914 (61 self)
 Add to MetaCart
functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 539 (20 self)
 Add to MetaCart
toimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
Results 1  10
of
181,736