Results 1  10
of
21,286
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 529 (35 self)
 Add to MetaCart
grammatical module. We decompose the learning problem and present formal results for a central subproblem, deducing the constraint ranking particular to a target language, given structural descriptions of positive examples. The structure imposed on the space of possible grammars by Optimality Theory allows
The Ant System: Optimization by a colony of cooperating agents
 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B
, 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract

Cited by 1300 (46 self)
 Add to MetaCart
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed
Unrealistic optimism about future life events.
 Journal of Personality and Social Psychology,
, 1980
"... Two studies investigated the tendency of people to be unrealistically optimistic about future life events. In Study 1, 258 college students estimated how much their own chances of experiencing 42 events differed from the chances of their classmates. Overall, they rated their own chances to be above ..."
Abstract

Cited by 535 (0 self)
 Add to MetaCart
to be above average for positive events and below average for negative events, ps<.001. Cognitive and motivational considerations led to predictions that degree of desirability, perceived probability, personal experience, perceived controllability, and stereotype salience would influence the amount
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
perfectly recover most lowrank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 818 (27 self)
 Add to MetaCart
containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 547 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 984 (32 self)
 Add to MetaCart
positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a
Managerial Discretion and Optimal Financing Policies
 J. Finan. Econ
, 1990
"... I analyze financing policies in a firm owned by atomistic shareholders who observe neither cash flows nor management’s investment decisions. Management derives perquisites from investment and invests as much as possible. Since it always claims that cash flow is too low to fund all positive net prese ..."
Abstract

Cited by 453 (18 self)
 Add to MetaCart
I analyze financing policies in a firm owned by atomistic shareholders who observe neither cash flows nor management’s investment decisions. Management derives perquisites from investment and invests as much as possible. Since it always claims that cash flow is too low to fund all positive net
Optimality Theory
, 2000
"... Introduction Rene Kager's textbook is one of the first to cover Optimality Theory (OT), a declarative grammar framework that swiftly took over phonology after it was introduced by Prince, Smolensky, and McCarthy in 1993. OT reclaims traditional grammar's ability to express surface genera ..."
Abstract

Cited by 426 (2 self)
 Add to MetaCart
Introduction Rene Kager's textbook is one of the first to cover Optimality Theory (OT), a declarative grammar framework that swiftly took over phonology after it was introduced by Prince, Smolensky, and McCarthy in 1993. OT reclaims traditional grammar's ability to express surface
Minimum energy mobile wireless networks
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 1999
"... We describe a distributed positionbased network protocol optimized for minimum energy consumption in mobile wireless networks that support peertopeer communications. Given any number of randomly deployed nodes over an area, we illustrate that a simple local optimization scheme executed at each n ..."
Abstract

Cited by 749 (0 self)
 Add to MetaCart
We describe a distributed positionbased network protocol optimized for minimum energy consumption in mobile wireless networks that support peertopeer communications. Given any number of randomly deployed nodes over an area, we illustrate that a simple local optimization scheme executed at each
Results 1  10
of
21,286