Results 1  10
of
1,356,018
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 1249 (14 self)
 Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 539 (20 self)
 Add to MetaCart
toimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Globally Consistent Range Scan Alignment for Environment Mapping
 AUTONOMOUS ROBOTS
, 1997
"... A robot exploring an unknown environmentmay need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is alig ..."
Abstract

Cited by 536 (8 self)
 Add to MetaCart
is aligned to a cumulative global model, and then merged to the model. Because different parts of the model are updated independently while there are errors in the registration, such an approachmay result in an inconsistent model. In this paper, we study the problem of consistent registration of multiple
Thresholding of statistical maps in functional neuroimaging using the false discovery rate
 Neuroimage
, 2002
"... Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for multi ..."
Abstract

Cited by 494 (8 self)
 Add to MetaCart
Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures
Results 1  10
of
1,356,018