Results 1  10
of
2,210,153
Optimal decoding order under target rate constraints, in
 Proc. 8th IEEE Int. Workshop on Signal Processing Advances for Wireless Communications
, 2007
"... In this contribution, we derive the optimal power allocation under target rate constraints in the case of an uplink multiuser system. Using asymptotic results based on random matrix theory, we provide a unified framework for determining the optimal decoding order when using Successive Interference C ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
In this contribution, we derive the optimal power allocation under target rate constraints in the case of an uplink multiuser system. Using asymptotic results based on random matrix theory, we provide a unified framework for determining the optimal decoding order when using Successive Interference
Optimal Decoding Order and Power Allocation in Multimedia CDMA Networks with Imperfect Successive Interference Cancellation
"... Abstract—In this paper, we study the influence of decoding order on the capacity of multimedia DSCDMA systems with imperfect successive interference cancellation. In contrast to previous studies, cancellation errors are assumed to be different for different users in this work. For any given deco ..."
Abstract
 Add to MetaCart
order of cancellation errors. We also prove that this capacityoptimal decoding order makes total residual interference minimum at the same time. Our results are verified by numerical example. I.
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
is controlled by a stop criterion derived from cross entropy, which results in a minimal number of iterations. Optimal and suboptimal decoders with reduced complexity are presented. Simulation results show that very simple component codes are sufficient, block codes are appropriate for high rates
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1400 (17 self)
 Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Wattch: A Framework for ArchitecturalLevel Power Analysis and Optimizations
 In Proceedings of the 27th Annual International Symposium on Computer Architecture
, 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract

Cited by 1295 (43 self)
 Add to MetaCart
Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high accuracy by calculating power estimates for designs only after layout or floorplanning are complete In addition to being available only late in the design process, such tools are often quite slow, which compounds the difficulty of running them for a large space of design possibilities.
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 511 (49 self)
 Add to MetaCart
the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its densitybased clustering structure. This clusterordering
Memory Consistency and Event Ordering in Scalable SharedMemory Multiprocessors
 In Proceedings of the 17th Annual International Symposium on Computer Architecture
, 1990
"... Scalable sharedmemory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the f ..."
Abstract

Cited by 735 (18 self)
 Add to MetaCart
and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.
Results 1  10
of
2,210,153