Results 1  10
of
4,888
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 526 (20 self)
 Add to MetaCart
We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a
WaitFree Synchronization
 ACM Transactions on Programming Languages and Systems
, 1993
"... A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another lie ..."
Abstract

Cited by 851 (28 self)
 Add to MetaCart
A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another
Comparing Images Using the Hausdorff Distance
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1993
"... The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide ef ..."
Abstract

Cited by 659 (10 self)
 Add to MetaCart
The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide
Laplacian eigenmaps and spectral techniques for embedding and clustering.
 Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract

Cited by 668 (7 self)
 Add to MetaCart
retrieval and data mining, one is often confronted with intrinsically low dimensional data lying in a very high dimensional space. For example, gray scale n x n images of a fixed object taken with a moving camera yield data points in rn: n2 . However , the intrinsic dimensionality of the space of all images
Unsupervised learning of human action categories using spatialtemporal words
 In Proc. BMVC
, 2006
"... Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences ..."
Abstract

Cited by 494 (8 self)
 Add to MetaCart
Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences
Interactive Digital Photomontage
 ACM TRANS. GRAPH
, 2004
"... We describe an interactive, computerassisted framework for combining parts of a set of photographs into a single composite picture, a process we call "digital photomontage." Our framework makes use of two techniques primarily: graphcut optimization, to choose good seams within the consti ..."
Abstract

Cited by 304 (17 self)
 Add to MetaCart
location in the set of source images. Typically, a user applies a series of image objectives iteratively in order to create a finished composite. The power of this framework lies in its generality; we show how it can be used for a wide variety of applications, including "selective composites
Region Covariance: A Fast Descriptor for Detection And Classification
 In Proc. 9th European Conf. on Computer Vision
, 2006
"... We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of dfeatures, e.g., the threedimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of in ..."
Abstract

Cited by 278 (14 self)
 Add to MetaCart
We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of dfeatures, e.g., the threedimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region
Visualizing Data using tSNE
, 2008
"... We present a new technique called “tSNE” that visualizes highdimensional data by giving each datapoint a location in a two or threedimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly b ..."
Abstract

Cited by 280 (13 self)
 Add to MetaCart
better visualizations by reducing the tendency to crowd points together in the center of the map. tSNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for highdimensional data that lie on several different
Unsupervised Learning of Image Manifolds by Semidefinite Programming
, 2004
"... Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be ..."
Abstract

Cited by 270 (9 self)
 Add to MetaCart
be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well
Nonlinear solution of linear inverse problems by waveletvaguelette decomposition
, 1992
"... We describe the WaveletVaguelette Decomposition (WVD) of a linear inverse problem. It is a substitute for the singular value decomposition (SVD) of an inverse problem, and it exists for a class of special inverse problems of homogeneous type { such asnumerical di erentiation, inversion of Abeltype ..."
Abstract

Cited by 251 (12 self)
 Add to MetaCart
case of Besov spaces Bp;q, p <2, which model spatial inhomogeneity, is included. In comparison, linear procedures { SVD included { cannot attain optimal rates of convergence over such classes in the case p<2. For example, our methods achieve faster rates of convergence, for objects known to lie
Results 1  10
of
4,888