Results 11  20
of
3,496,579
The CN2 Induction Algorithm
 MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract

Cited by 884 (6 self)
 Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 528 (22 self)
 Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has
Unscented Filtering and Nonlinear Estimation
 PROCEEDINGS OF THE IEEE
, 2004
"... The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the ..."
Abstract

Cited by 558 (5 self)
 Add to MetaCart
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 517 (5 self)
 Add to MetaCart
Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 665 (33 self)
 Add to MetaCart
All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based
The NewReno Modification to TCP’s Fast Recovery Algorithm
, 2003
"... RFC 2581 [RFC2581] documents the following four intertwined TCP congestion control algorithms: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. RFC 2581 [RFC2581] explicitly allows certain modifications of these algorithms, including modifications that use the TCP Selective Ackn ..."
Abstract

Cited by 587 (9 self)
 Add to MetaCart
Acknowledgement (SACK) option [RFC2018], and modifications that respond to "partial acknowledgments" (ACKs which cover new data, but not all the data outstanding when loss was detected) in the absence of SACK. The NewReno mechanism described in this document describes a specific algorithm for responding
Virtual clock: A new traffic control algorithm for packet switching networks
 In Proc. ACM SIGCOMM
, 1990
"... A challenging research issue in high speed networking is how to control the transmission rate of statistical data P OWS. This paper describes a new algorithm, VirtualClock, for data trafic control in highspeed networks. VirtualClock maintains the statistical multiplexing flexibility of packet swit ..."
Abstract

Cited by 616 (5 self)
 Add to MetaCart
A challenging research issue in high speed networking is how to control the transmission rate of statistical data P OWS. This paper describes a new algorithm, VirtualClock, for data trafic control in highspeed networks. VirtualClock maintains the statistical multiplexing flexibility of packet
A review of image denoising algorithms, with a new one
 SIMUL
, 2005
"... The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding perf ..."
Abstract

Cited by 503 (6 self)
 Add to MetaCart
The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 684 (4 self)
 Add to MetaCart
We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 435 (6 self)
 Add to MetaCart
to a compact representation of objects so that similarity of objects can be estimated from their compact sketches, and also leads to efficient algorithms for approximate nearest neighbor search and clustering. Minwise independent permutations provide an elegant construction of such a locality
Results 11  20
of
3,496,579