• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 12,176
Next 10 →

Unsupervised word sense disambiguation rivaling supervised methods

by David Yarowsky - IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract - Cited by 638 (4 self) - Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have

Unsupervised Models for Named Entity Classification

by Michael Collins, Yoram Singer - In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora , 1999
"... This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabe ..."
Abstract - Cited by 542 (4 self) - Add to MetaCart
This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use

Self-supervised Chinese Word Segmentation

by Fuchun Peng, Dale Schuurmans - In F. Homan et al. (Eds.): Advances in Intelligent Data Analysis, Proceedings of the Fourth International Conference (IDA-01), LNCS 2189 , 2001
"... We propose a new unsupervised training method for acquiring... ..."
Abstract - Cited by 32 (7 self) - Add to MetaCart
We propose a new unsupervised training method for acquiring...

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms

by Michael Collins , 2002
"... We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a modific ..."
Abstract - Cited by 660 (13 self) - Add to MetaCart
We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a

Boosting the margin: A new explanation for the effectiveness of voting methods

by Robert E. Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee - IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING , 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract - Cited by 897 (52 self) - Add to MetaCart
One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show

A discriminatively trained, multiscale, deformable part model

by Pedro Felzenszwalb, David Mcallester, Deva Ramanan - In IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2008 , 2008
"... This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge ..."
Abstract - Cited by 555 (11 self) - Add to MetaCart
challenge in ten out of twenty categories. The system relies heavily on deformable parts. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL challenge. Our system also relies heavily on new methods for discriminative

Object Detection with Discriminatively Trained Part Based Models

by Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, Deva Ramanan
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract - Cited by 1422 (49 self) - Add to MetaCart
, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM

Training Support Vector Machines: an Application to Face Detection

by Edgar Osuna, Robert Freund, Federico Girosi , 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract - Cited by 727 (1 self) - Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision

Statistical pattern recognition: A review

by Anil K. Jain, Robert P. W. Duin, Jianchang Mao - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract - Cited by 1035 (30 self) - Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network

A bayesian hierarchical model for learning natural scene categories

by Li Fei-fei - In CVPR , 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract - Cited by 948 (15 self) - Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each
Next 10 →
Results 1 - 10 of 12,176
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University