Results 1 - 10
of
12,207
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract
-
Cited by 13236 (32 self)
- Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
A new string-to-dependency machine translation algorithm with a target dependency language model
- In Proc. of ACL
, 2008
"... In this paper, we propose a novel string-todependency algorithm for statistical machine translation. With this new framework, we employ a target dependency language model during decoding to exploit long distance word relations, which are unavailable with a traditional n-gram language model. Our expe ..."
Abstract
-
Cited by 135 (7 self)
- Add to MetaCart
In this paper, we propose a novel string-todependency algorithm for statistical machine translation. With this new framework, we employ a target dependency language model during decoding to exploit long distance word relations, which are unavailable with a traditional n-gram language model. Our
The Alignment Template Approach to Statistical Machine Translation
, 2004
"... A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order f ..."
Abstract
-
Cited by 480 (26 self)
- Add to MetaCart
A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order
Ensemble Methods in Machine Learning
- MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract
-
Cited by 625 (3 self)
- Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging
Experiments with a New Boosting Algorithm
, 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract
-
Cited by 2213 (20 self)
- Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced
Statistical phrase-based translation
, 2003
"... We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models outpe ..."
Abstract
-
Cited by 944 (11 self)
- Add to MetaCart
We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract
-
Cited by 727 (1 self)
- Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Survey of clustering algorithms
- IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract
-
Cited by 499 (4 self)
- Add to MetaCart
, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts
Maté: A Tiny Virtual Machine for Sensor Networks
, 2002
"... Composed of tens of thousands of tiny devices with very limited resources ("motes"), sensor networks are subject to novel systems problems and constraints. The large number of motes in a sensor network means that there will often be some failing nodes; networks must be easy to repopu-late. ..."
Abstract
-
Cited by 510 (21 self)
- Add to MetaCart
-late. Often there is no feasible method to recharge motes, so energy is a precious resource. Once deployed, a network must be reprogrammable although physically unreachable, and this reprogramming can be a significant energy cost. We present Maté, a tiny communication-centric virtual machine designed
Randomized Gossip Algorithms
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract
-
Cited by 532 (5 self)
- Add to MetaCart
Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join
Results 1 - 10
of
12,207