Results 1  10
of
2,647,436
Projection Pursuit Regression
 Journal of the American Statistical Association
, 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract

Cited by 555 (6 self)
 Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures
The TSIMMIS Project: Integration of Heterogeneous Information Sources
"... The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects, ..."
Abstract

Cited by 534 (19 self)
 Add to MetaCart
The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects
Surroundscreen projectionbased virtual reality: The design and implementation of the CAVE
, 1993
"... Abstract Several common systems satisfy some but not all of the VR This paper describes the CAVE (CAVE Automatic Virtual Environment) virtual reality/scientific visualization system in detail and demonstrates that projection technology applied to virtualreality goals achieves a system that matches ..."
Abstract

Cited by 709 (27 self)
 Add to MetaCart
Abstract Several common systems satisfy some but not all of the VR This paper describes the CAVE (CAVE Automatic Virtual Environment) virtual reality/scientific visualization system in detail and demonstrates that projection technology applied to virtualreality goals achieves a system that matches
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 2263 (18 self)
 Add to MetaCart
from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes
The Player/Stage Project: Tools for MultiRobot and Distributed Sensor Systems
 In Proceedings of the 11th International Conference on Advanced Robotics
, 2003
"... This paper describes the Player/Stage software tools applied to multirobot, distributedrobot and sensor network systems. Player is a robot device server that provides network transparent robot control. Player seeks to constrain controller design as little as possible; it is device independent, non ..."
Abstract

Cited by 617 (14 self)
 Add to MetaCart
, nonlocking and language and styleneutral. Stage is a lightweight, highly configurable robot simulator that supports large populations. Player/Stage is a community Free Software project. Current usage of Player and Stage is reviewed, and some interesting research opportunities opened up
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 848 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
From genomics to chemical genomics: new developments in KEGG
 Nucleic Acids Res
, 2006
"... The increasing amount of genomic and molecular information is the basis for understanding higherorder biological systems, such as the cell and the 15 organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource ..."
Abstract

Cited by 517 (30 self)
 Add to MetaCart
The increasing amount of genomic and molecular information is the basis for understanding higherorder biological systems, such as the cell and the 15 organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource
The Digital Michelangelo Project: 3D Scanning of Large Statues
, 2000
"... We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merg ..."
Abstract

Cited by 488 (8 self)
 Add to MetaCart
We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merging, and viewing scanned data. As a demonstration of this system, we digitized 10 statues by Michelangelo, including the wellknown figure of David, two building interiors, and all 1,163 extant fragments of the Forma Urbis Romae, a giant marble map of ancient Rome. Our largest single dataset is of the David  2 billion polygons and 7,000 color images. In this paper, we discuss the challenges we faced in building this system, the solutions we employed, and the lessons we learned. We focus in particular on the unusual design of our laser triangulation scanner and on the algorithms and software we developed for handling very large scanned models. CR Categories: I.2.10 [Artificial Intelligence]...
Focused crawling: a new approach to topicspecific Web resource discovery
, 1999
"... The rapid growth of the WorldWide Web poses unprecedented scaling challenges for generalpurpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages that are relevan ..."
Abstract

Cited by 628 (10 self)
 Add to MetaCart
The rapid growth of the WorldWide Web poses unprecedented scaling challenges for generalpurpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages
Results 1  10
of
2,647,436