Results 1  10
of
2,639
A Monotonic Superclass Linearization for Dylan
, 1996
"... Objectoriented languages with multiple inheritance and automatic conflict resolution typically
use a linearization of superclasses to determine which version of a property to inherit when
several superclasses provide definitions. Recent work has defined several desirable characteristics
for lineari ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
for linearizations, the most important being monotonicity, which prohibits inherited properties
from skipping over direct superclasses. Combined with Dylan’s sealing mechanism, a monotonic
linearization enables some compiletime method selection that would otherwise be impossible
in the absence of a closed
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 788 (30 self)
 Add to MetaCart
of the bilinear objective function under a monotonicity assumption, the polyhedrality of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
Robust wide baseline stereo from maximally stable extremal regions
 In Proc. BMVC
, 2002
"... The widebaseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desir ..."
Abstract

Cited by 1016 (35 self)
 Add to MetaCart
sirable properties: the set is closed under 1. continuous (and thus projective) transformation of image coordinates and 2. monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinelyinvariant stable
The PATH Solver: A NonMonotone Stabilization Scheme for Mixed Complementarity Problems
 OPTIMIZATION METHODS AND SOFTWARE
, 1995
"... The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length acceptan ..."
Abstract

Cited by 213 (40 self)
 Add to MetaCart
The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length
Realtime logics: complexity and expressiveness
 INFORMATION AND COMPUTATION
, 1993
"... The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via ..."
Abstract

Cited by 252 (16 self)
 Add to MetaCart
The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via
Monotone Circuits for Matching Require Linear Depth
"... We prove that monotone circuits computing the perfect matching function on nvertex graphs require\Omega\Gamma n) depth. This implies an exponential gap between the depth of monotone and nonmonotone circuits. ..."
Abstract

Cited by 82 (10 self)
 Add to MetaCart
We prove that monotone circuits computing the perfect matching function on nvertex graphs require\Omega\Gamma n) depth. This implies an exponential gap between the depth of monotone and nonmonotone circuits.
Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations
 IN STACS
, 2005
"... We define Recursive Markov Chains (RMCs), a class of finitely presented denumerable Markov chains, and we study algorithms for their analysis. Informally, an RMC consists of a collection of finitestate Markov chains with the ability to invoke each other in a potentially recursive manner. RMCs offer ..."
Abstract

Cited by 95 (13 self)
 Add to MetaCart
and termination analysis for RMCs: what is the probability that an RMC started from a given state reaches another target state, or that it terminates? These probabilities are in general irrational, and they arise as (least) fixed point solutions to certain (monotone) systems of nonlinear equations associated
A New TwIST: TwoStep Iterative Shrinkage/Thresholding Algorithms for Image Restoration
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2007
"... Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic ..."
Abstract

Cited by 183 (26 self)
 Add to MetaCart
Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic
The MetricFF planning system: Translating ”ignoring delete lists” to numeric state variables.
 Journal Artificial Intelligence Research (JAIR)
, 2003
"... Abstract Planning with numeric state variables has been a challenge for many years, and was a part of the 3rd International Planning Competition (IPC3). Currently one of the most popular and successful algorithmic techniques in STRIPS planning is to guide search by a heuristic function, where the ..."
Abstract

Cited by 179 (12 self)
 Add to MetaCart
task at hand is "monotonic". We then identify a subset of the numeric IPC3 competition language, "linear tasks", where monotonicity can be achieved by preprocessing. Based on that, we extend the algorithms used in the heuristic planning system FF to linear tasks. The resulting
Results 1  10
of
2,639