Results 1  10
of
31,086
Automata with Modulo Counters and Nondeterministic Counter Bounds
"... Automata with modulo counters and nondeterministic counter bounds This item was submitted to Loughborough University’s Institutional Repository by the/an author. ..."
Abstract
 Add to MetaCart
Automata with modulo counters and nondeterministic counter bounds This item was submitted to Loughborough University’s Institutional Repository by the/an author.
Modular Termination and Combinability for Superposition Modulo Counter Arithmetic
"... Modularity is a highly desirable property in the development of satisfiability procedures. In this paper we are interested in using a dedicated superposition calculus to develop satisfiability procedures for (unions of) theories sharing counter arithmetic. In the first place, we are concerned with ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Modularity is a highly desirable property in the development of satisfiability procedures. In this paper we are interested in using a dedicated superposition calculus to develop satisfiability procedures for (unions of) theories sharing counter arithmetic. In the first place, we are concerned
The synchronous dataflow programming language LUSTRE
 Proceedings of the IEEE
, 1991
"... This paper describes the language Lustre, which is a dataflow synchronous language, designed for programming reactive systems  such as automatic control and monitoring systems  as well as for describing hardware. The dataflow aspect of Lustre makes it very close to usual description tools in t ..."
Abstract

Cited by 647 (53 self)
 Add to MetaCart
This paper describes the language Lustre, which is a dataflow synchronous language, designed for programming reactive systems  such as automatic control and monitoring systems  as well as for describing hardware. The dataflow aspect of Lustre makes it very close to usual description tools in these domains (blockdiagrams, networks of operators, dynamical samplessystems, etc: : : ), and its synchronous interpretation makes it well suited for handling time in programs. Moreover, this synchronous interpretation allows it to be compiled into an efficient sequential program. Finally, the Lustre formalism is very similar to temporal logics. This allows the language to be used for both writing programs and expressing program properties, which results in an original program verification methodology. 1 Introduction Reactive systems Reactive systems have been defined as computing systems which continuously interact with a given physical environment, when this environment is unable to sy...
KLEE: Unassisted and Automatic Generation of HighCoverage Tests for Complex Systems Programs
"... We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentallyintensive programs. We used KLEE to thoroughly check all 89 standalone programs in the GNU COREUTILS utility suite, which form the cor ..."
Abstract

Cited by 541 (14 self)
 Add to MetaCart
We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentallyintensive programs. We used KLEE to thoroughly check all 89 standalone programs in the GNU COREUTILS utility suite, which form the core userlevel environment installed on millions of Unix systems, and arguably are the single most heavily tested set of opensource programs in existence. KLEEgenerated tests achieve high line coverage — on average over 90% per tool (median: over 94%) — and significantly beat the coverage of the developers ’ own handwritten test suite. When we did the same for 75 equivalent tools in the BUSYBOX embedded system suite, results were even better, including 100 % coverage on 31 of them. We also used KLEE as a bug finding tool, applying it to 452 applications (over 430K total lines of code), where it found 56 serious bugs, including three in COREUTILS that had been missed for over 15 years. Finally, we used KLEE to crosscheck purportedly identical BUSYBOX and COREUTILS utilities, finding functional correctness errors and a myriad of inconsistencies. 1
A Digital Signature Scheme Secure Against Adaptive ChosenMessage Attacks
, 1995
"... We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a ..."
Abstract

Cited by 985 (43 self)
 Add to MetaCart
We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a way that depends on the signatures of previously chosen messages) can not later forge the signature of even a single additional message. This may be somewhat surprising, since the properties of having forgery being equivalent to factoring and being invulnerable to an adaptive chosenmessage attack were considered in the folklore to be contradictory. More generally, we show how to construct a signature scheme with such properties based on the existence of a "clawfree" pair of permutations  a potentially weaker assumption than the intractibility of integer factorization. The new scheme is potentially practical: signing and verifying signatures are reasonably fast, and signatures are compact.
Virtual Time and Global States of Distributed Systems
 PARALLEL AND DISTRIBUTED ALGORITHMS
, 1988
"... A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a consiste ..."
Abstract

Cited by 741 (6 self)
 Add to MetaCart
A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a consistent population census or determining the potential causality between events. We argue that a linearly ordered structure of time is not (always) adequate for distributed systems and propose a generalized nonstandardmodel of time which consists of vectors of clocks. These clockvectors arepartially orderedand form a lattice. By using timestamps and a simple clock update mechanism the structure of causality is represented in an isomorphic way. The new model of time has a close analogy to Minkowski's relativistic spacetime and leads among others to an interesting characterization of the global state problem. Finally, we present a new algorithm to compute a consistent global snapshot of a distributed system where messages may bereceived out of order.
Bandera: Extracting Finitestate Models from Java Source Code
 IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 2000
"... Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a fini ..."
Abstract

Cited by 653 (35 self)
 Add to MetaCart
Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a finitestate model that approximates the executable behavior of the software system of interest. Current bestpractice involves handconstruction of models which is expensive (prohibitive for all but the smallest systems), prone to errors (which can result in misleading verification results), and difficult to optimize (which is necessary to combat the exponential complexity of verification algorithms). In this paper, we describe an integrated collection of program analysis and transformation components, called Bandera, that enables the automatic extraction of safe, compact finitestate models from program source code. Bandera takes as input Java source code and generates a program model in the input language of one of several existing verification tools; Bandera also maps verifier outputs back to the original source code. We discuss the major components of Bandera and give an overview of how it can be used to model check correctness properties of Java programs.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored. AMS subject classifications: 82P10, 11Y05, 68Q10. 1 Introduction One of the first results in the mathematics of computation, which underlies the subsequent development of much of theoretical computer science, was the distinction between computable and ...
Stream Control Transmission Protocol
, 2007
"... This document is an InternetDraft and is in full conformance with all provisions of Section 10 of RFC 2026. InternetDrafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Interne ..."
Abstract

Cited by 570 (22 self)
 Add to MetaCart
This document is an InternetDraft and is in full conformance with all provisions of Section 10 of RFC 2026. InternetDrafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as InternetDrafts. InternetDrafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet Drafts as reference material or to cite them other than as ‘‘work in progress.’’ The list of current InternetDrafts can be accessed at
Results 1  10
of
31,086