Results 1  10
of
78,895
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 13236 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
A Comparison of New and Old Algorithms for A Mixture Estimation Problem
 Machine Learning
, 1995
"... . We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projectio ..."
Abstract

Cited by 37 (11 self)
 Add to MetaCart
. We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient
Bayesian density estimation and inference using mixtures.
 J. Amer. Statist. Assoc.
, 1995
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about J ..."
Abstract

Cited by 653 (18 self)
 Add to MetaCart
mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 993 (18 self)
 Add to MetaCart
estimation problem. A variant of the algorithm that exploits sparse conditional distributions is also described, and a wide range of other variant algorithms are also seen to be possible. 1. Introduction The ExpectationMaximization (EM) algorithm finds maximum likelihood parameter estimates in problems
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 693 (4 self)
 Add to MetaCart
We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 885 (21 self)
 Add to MetaCart
We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 513 (17 self)
 Add to MetaCart
vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each
Fitting a mixture model by expectation maximization to discover motifs in biopolymers.
 Proc Int Conf Intell Syst Mol Biol
, 1994
"... Abstract The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expect~tiou ma.,dmization to fit a twocomponent finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model to th ..."
Abstract

Cited by 947 (5 self)
 Add to MetaCart
Abstract The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expect~tiou ma.,dmization to fit a twocomponent finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 783 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
Results 1  10
of
78,895