Results 11 - 20
of
446,138
A modular three-dimensional finite-difference ground-water flow model
- U.S. Geological Survey Techniques of WaterResources Investigations Book 6, Chapter A1
, 1988
"... The primary objective of this course is to discuss the principals of finite difference methods and their applications in groundwater modeling. The emphasis of the class lectures is on the theoretical aspects of numerical modeling (finite difference method). Steps involved in simulation of groundwate ..."
Abstract
-
Cited by 508 (5 self)
- Add to MetaCart
The primary objective of this course is to discuss the principals of finite difference methods and their applications in groundwater modeling. The emphasis of the class lectures is on the theoretical aspects of numerical modeling (finite difference method). Steps involved in simulation
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
, 1981
"... Several methods have been previously used to approximate free boundaries in finite difference numerical simulations. A simple, but powerful, method is described that is based on the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible and efficient than other metho ..."
Abstract
-
Cited by 603 (3 self)
- Add to MetaCart
Several methods have been previously used to approximate free boundaries in finite difference numerical simulations. A simple, but powerful, method is described that is based on the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible and efficient than other
Sequential Monte Carlo Methods for Dynamic Systems
- Journal of the American Statistical Association
, 1998
"... A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ..."
Abstract
-
Cited by 664 (13 self)
- Add to MetaCart
ingredients: importance sampling and resampling, rejection sampling, and Markov chain iterations. We deliver a guideline on how they should be used and under what circumstance each method is most suitable. Through the analysis of differences and connections, we consolidate these methods into a generic
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 624 (12 self)
- Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
- IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS
, 1993
"... A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive tech ..."
Abstract
-
Cited by 938 (34 self)
- Add to MetaCart
A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive
Propensity Score Matching Methods For Non-Experimental Causal Studies
, 2002
"... This paper considers causal inference and sample selection bias in non-experimental settings in which: (i) few units in the non-experimental comparison group are comparable to the treatment units; and (ii) selecting a subset of comparison units similar to the treatment units is difficult because uni ..."
Abstract
-
Cited by 714 (3 self)
- Add to MetaCart
units must be compared across a high-dimensional set of pretreatment characteristics. We discuss the use of propensity score matching methods, and implement them using data from the NSW experiment. Following Lalonde (1986), we pair the experimental treated units with non-experimental comparison units
Comparison of discrimination methods for the classification of tumors using gene expression data
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract
-
Cited by 770 (6 self)
- Add to MetaCart
gene expression data is an important aspect of this novel approach to cancer classification. This article compares the performance of different discrimination methods for the classification of tumors based on gene expression data. The methods include nearest-neighbor classifiers, linear discriminant
A volumetric method for building complex models from range images,”
- in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,
, 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract
-
Cited by 1020 (17 self)
- Add to MetaCart
the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.
Boosting the margin: A new explanation for the effectiveness of voting methods
- IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract
-
Cited by 897 (52 self)
- Add to MetaCart
that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show
Suffix arrays: A new method for on-line string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract
-
Cited by 835 (0 self)
- Add to MetaCart
, regardless of the alphabet size, constructs suffix arrays in O(N) expected time, albeit with lesser space efficiency. We believe that suffix arrays will prove to be better in practice than suffix trees for many applications.
Results 11 - 20
of
446,138