Results 1 - 10
of
9,001
Nonlinear dimensionality reduction by locally linear embedding
- SCIENCE
, 2000
"... Many areas of science ..."
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low-dimensional manifold embedded in a high-dimensional space. Drawing on the correspondenc ..."
Abstract
-
Cited by 1226 (15 self)
- Add to MetaCart
on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for representing the high-dimensional data. The algorithm provides a computationally efficient ap-proach to nonlinear dimensionality
Efficient Variants of the ICP Algorithm
- INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract
-
Cited by 718 (5 self)
- Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Analysis of Recommendation Algorithms for E-Commerce
, 2000
"... Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in E-Commerce nowadays. In this paper, we investigate several techniques for analyzing large-scale pu ..."
Abstract
-
Cited by 523 (22 self)
- Add to MetaCart
-scale purchase and preference data for the purpose of producing useful recommendations to customers. In particular, we apply a collection of algorithms such as traditional data mining, nearest-neighbor collaborative ltering, and dimensionality reduction on two dierent data sets. The rst data set was derived from
Cost-Aware WWW Proxy Caching Algorithms
- IN PROCEEDINGS OF THE 1997 USENIX SYMPOSIUM ON INTERNET TECHNOLOGY AND SYSTEMS
, 1997
"... Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and non-parameterized fash ..."
Abstract
-
Cited by 540 (6 self)
- Add to MetaCart
-parameterized fashion for high performance. Trace-driven simulations show that with the appropriate cost definition, GreedyDual-Size outperforms existing web cache replacement algorithms in many aspects, including hit ratios, latency reduction and network cost reduction. In addition, GreedyDual-Size can potentially
From Few to many: Illumination cone models for face recognition under variable lighting and pose
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract
-
Cited by 754 (12 self)
- Add to MetaCart
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated
A fast learning algorithm for deep belief nets
- Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract
-
Cited by 970 (49 self)
- Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer
Laplacian eigenmaps and spectral techniques for embedding and clustering.
- Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract
-
Cited by 668 (7 self)
- Add to MetaCart
in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered. In many areas of artificial intelligence, information
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract
-
Cited by 532 (6 self)
- Add to MetaCart
of clustering, density modelling and local dimensionality reduction, and we demonstrate its applicat...
Detecting faces in images: A survey
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract
-
Cited by 839 (4 self)
- Add to MetaCart
Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image
Results 1 - 10
of
9,001