Results 1  10
of
4,099,633
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11717 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 801 (13 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
A message ferrying approach for data delivery in sparse mobile ad hoc networks
 In Proc. of ACM Mobihoc
, 2004
"... Mobile Ad Hoc Networks (MANETs) provide rapidly deployable and selfconfiguring network capacity required in many critical applications, e.g., battlefields, disaster relief and wide area sensing. In this paper we study the problem of efficient data delivery in sparse MANETs where network partitions ..."
Abstract

Cited by 489 (14 self)
 Add to MetaCart
Mobile Ad Hoc Networks (MANETs) provide rapidly deployable and selfconfiguring network capacity required in many critical applications, e.g., battlefields, disaster relief and wide area sensing. In this paper we study the problem of efficient data delivery in sparse MANETs where network partitions
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 701 (17 self)
 Add to MetaCart
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 496 (8 self)
 Add to MetaCart
then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Generating typed dependency parses from phrase structure parses
 IN PROC. INT’L CONF. ON LANGUAGE RESOURCES AND EVALUATION (LREC
, 2006
"... This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to capture inherent relations occurring in corpus texts that can be critical in realworld applications, many NP relations are included in the set of grammatical relations ..."
Abstract

Cited by 637 (25 self)
 Add to MetaCart
This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to capture inherent relations occurring in corpus texts that can be critical in realworld applications, many NP relations are included in the set of grammatical
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 536 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Support Vector Machine Active Learning with Applications to Text Classification
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using poolbased acti ..."
Abstract

Cited by 720 (5 self)
 Add to MetaCart
Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 522 (16 self)
 Add to MetaCart
Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a
Generic Schema Matching with Cupid
 In The VLDB Journal
, 2001
"... Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past s ..."
Abstract

Cited by 594 (17 self)
 Add to MetaCart
Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past
Results 1  10
of
4,099,633