Results 1 - 10
of
45,852
A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR PROGRAMMING
- COMBINATORICA
, 1984
"... We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract
-
Cited by 860 (3 self)
- Add to MetaCart
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Points-to Analysis in Almost Linear Time
, 1996
"... We present an interprocedural flow-insensitive points-to analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest non-trivial interprocedural points-to analysis algorithm yet described. The algorithm is based on a non-s ..."
Abstract
-
Cited by 595 (3 self)
- Add to MetaCart
We present an interprocedural flow-insensitive points-to analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest non-trivial interprocedural points-to analysis algorithm yet described. The algorithm is based on a non
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
- SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract
-
Cited by 547 (12 self)
- Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract
-
Cited by 2825 (11 self)
- Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs
"... We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentally-intensive programs. We used KLEE to thoroughly check all 89 stand-alone programs in the GNU COREUTILS utility suite, which form the cor ..."
Abstract
-
Cited by 557 (15 self)
- Add to MetaCart
We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentally-intensive programs. We used KLEE to thoroughly check all 89 stand-alone programs in the GNU COREUTILS utility suite, which form
An introduction to Kolmogorov Complexity and its Applications: Preface to the First Edition
, 1997
"... This document has been prepared using the L a T E X system. We thank Donald Knuth for T E X, Leslie Lamport for L a T E X, and Jan van der Steen at CWI for online help. Some figures were prepared by John Tromp using the xpic program. The London Mathematical Society kindly gave permission to reproduc ..."
Abstract
-
Cited by 2138 (120 self)
- Add to MetaCart
This document has been prepared using the L a T E X system. We thank Donald Knuth for T E X, Leslie Lamport for L a T E X, and Jan van der Steen at CWI for online help. Some figures were prepared by John Tromp using the xpic program. The London Mathematical Society kindly gave permission
Symbolic Model Checking: 10^20 States and Beyond
, 1992
"... Many different methods have been devised for automatically verifying finite state systems by examining state-graph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of st ..."
Abstract
-
Cited by 758 (41 self)
- Add to MetaCart
Binary Decision Diagrams (Bryant, R. E., 1986, IEEE Trans. Comput. C-35) to represent relations and formulas. We then show how our new Mu-Calculus model checking algorithm can be used to derive efficient decision procedures for CTL model checking, satistiability of linear-time temporal logic formulas
The algorithmic analysis of hybrid systems
- THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract
-
Cited by 778 (71 self)
- Add to MetaCart
We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract
-
Cited by 483 (2 self)
- Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Interior-point Methods
, 2000
"... The modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract
-
Cited by 612 (15 self)
- Add to MetaCart
quadratic programming, semidefinite programming, and nonconvex and nonlinear problems, have reached varying levels of maturity. We review some of the key developments in the area, including comments on both the complexity theory and practical algorithms for linear programming, semidefinite programming
Results 1 - 10
of
45,852