Results 1 - 10
of
107,355
A Security Architecture for Computational Grids
, 1998
"... State-of-the-art and emerging scientific applications require fast access to large quantities of data and commensurately fast computational resources. Both resources and data are often distributed in a wide-area network with components administered locally and independently. Computations may involve ..."
Abstract
-
Cited by 568 (47 self)
- Add to MetaCart
State-of-the-art and emerging scientific applications require fast access to large quantities of data and commensurately fast computational resources. Both resources and data are often distributed in a wide-area network with components administered locally and independently. Computations may
GPFS: A Shared-Disk File System for Large Computing Clusters
- In Proceedings of the 2002 Conference on File and Storage Technologies (FAST
, 2002
"... GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community ove ..."
Abstract
-
Cited by 521 (3 self)
- Add to MetaCart
GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community
The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets
- JOURNAL OF NETWORK AND COMPUTER APPLICATIONS
, 1999
"... In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental to the des ..."
Abstract
-
Cited by 471 (41 self)
- Add to MetaCart
In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental
Automatically characterizing large scale program behavior
, 2002
"... Understanding program behavior is at the foundation of computer architecture and program optimization. Many pro-grams have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and com-pile ..."
Abstract
-
Cited by 778 (41 self)
- Add to MetaCart
Understanding program behavior is at the foundation of computer architecture and program optimization. Many pro-grams have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and com
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 624 (12 self)
- Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
Large Margin Classification Using the Perceptron Algorithm
- Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vapnik 's maximal-margin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract
-
Cited by 521 (2 self)
- Add to MetaCart
with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our
Making Large-Scale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract
-
Cited by 1861 (17 self)
- Add to MetaCart
and computational results developed for SV M light V2.0, which make large-scale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
MapReduce: Simplified data processing on large clusters.
- In Proceedings of the Sixth Symposium on Operating System Design and Implementation (OSDI-04),
, 2004
"... Abstract MapReduce is a programming model and an associated implementation for processing and generating large data sets. Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of ..."
Abstract
-
Cited by 3439 (3 self)
- Add to MetaCart
distributed system. Our implementation of MapReduce runs on a large cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers find the system easy to use: hundreds of MapReduce programs have been implemented
Pregel: A system for large-scale graph processing
- IN SIGMOD
, 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract
-
Cited by 496 (0 self)
- Add to MetaCart
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational
Results 1 - 10
of
107,355