Results 1 - 10
of
73,007
Distributed Parallel Inference on Large Factor Graphs
"... As computer clusters become more common and the size of the problems encountered in the field of AI grows, there is an increasing demand for efficient parallel inference algorithms. We consider the problem of parallel inference on large factor graphs in the distributed memory setting of computer clu ..."
Abstract
-
Cited by 19 (4 self)
- Add to MetaCart
As computer clusters become more common and the size of the problems encountered in the field of AI grows, there is an increasing demand for efficient parallel inference algorithms. We consider the problem of parallel inference on large factor graphs in the distributed memory setting of computer
MAP inference in Large Factor Graphs with Reinforcement Learning
"... Large, relational factor graphs with structure defined by first-order logic or other languages give rise to notoriously difficult inference problems. Because unrolling the structure necessary to represent distributions over all hypotheses has exponential blow-up, solutions are often derived from MCM ..."
Abstract
- Add to MetaCart
Large, relational factor graphs with structure defined by first-order logic or other languages give rise to notoriously difficult inference problems. Because unrolling the structure necessary to represent distributions over all hypotheses has exponential blow-up, solutions are often derived from
Inference and learning in large factor graphs with adaptive proposal distributions
, 2009
"... Large templated factor graphs with complex structure that changes during inference have been shown to provide state-of-the-art experimental results in tasks such as identity uncertainty and information integration. However, inference and learning in these models is notoriously difficult. This paper ..."
Abstract
-
Cited by 7 (5 self)
- Add to MetaCart
Large templated factor graphs with complex structure that changes during inference have been shown to provide state-of-the-art experimental results in tasks such as identity uncertainty and information integration. However, inference and learning in these models is notoriously difficult. This paper
Factor Graphs and the Sum-Product Algorithm
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract
-
Cited by 1791 (69 self)
- Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Pregel: A system for large-scale graph processing
- IN SIGMOD
, 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract
-
Cited by 496 (0 self)
- Add to MetaCart
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational
Algebraic Graph Theory
, 2011
"... Algebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example, automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects. One of the oldest themes in the area is the investiga ..."
Abstract
-
Cited by 892 (13 self)
- Add to MetaCart
Algebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example, automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects. One of the oldest themes in the area
Fast approximate energy minimization via graph cuts
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract
-
Cited by 2120 (61 self)
- Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when
Graph-based algorithms for Boolean function manipulation
- IEEE TRANSACTIONS ON COMPUTERS
, 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract
-
Cited by 3526 (46 self)
- Add to MetaCart
to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.
Secure Group Communications Using Key Graphs
- SIGCOMM '98
, 1998
"... Many emerging applications (e.g., teleconference, real-time information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract
-
Cited by 556 (17 self)
- Add to MetaCart
Many emerging applications (e.g., teleconference, real-time information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number
What energy functions can be minimized via graph cuts?
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract
-
Cited by 1047 (23 self)
- Add to MetaCart
many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions
Results 1 - 10
of
73,007