Results 1 - 10
of
38,786
Maximum likelihood from incomplete data via the EM algorithm
- JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract
-
Cited by 11972 (17 self)
- Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract
-
Cited by 647 (82 self)
- Add to MetaCart
GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract
-
Cited by 537 (0 self)
- Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.
Iterative point matching for registration of free-form curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract
-
Cited by 660 (8 self)
- Add to MetaCart
, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision
"GrabCut” -- interactive foreground extraction using iterated graph cuts
- ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract
-
Cited by 1130 (36 self)
- Add to MetaCart
of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for “border matting ” has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show
Pegasos: Primal Estimated sub-gradient solver for SVM
"... We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract
-
Cited by 542 (20 self)
- Add to MetaCart
We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Model-Based Clustering, Discriminant Analysis, and Density Estimation
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract
-
Cited by 573 (29 self)
- Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract
-
Cited by 2182 (27 self)
- Add to MetaCart
. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Estimating standard errors in finance panel data sets: comparing approaches.
- Review of Financial Studies
, 2009
"... Abstract In both corporate finance and asset pricing empirical work, researchers are often confronted with panel data. In these data sets, the residuals may be correlated across firms and across time, and OLS standard errors can be biased. Historically, the two literatures have used different solut ..."
Abstract
-
Cited by 890 (7 self)
- Add to MetaCart
solutions to this problem. Corporate finance has relied on clustered standard errors, while asset pricing has used the Fama-MacBeth procedure to estimate standard errors. This paper examines the different methods used in the literature and explains when the different methods yield the same (and correct
On estimating the expected return on the market -- an exploratory investigation
- JOURNAL OF FINANCIAL ECONOMICS
, 1980
"... The expected market return is a number frequently required for the solution of many investment and corporate tinance problems, but by comparison with other tinancial variables, there has been little research on estimating this expected return. Current practice for estimating the expected market retu ..."
Abstract
-
Cited by 490 (3 self)
- Add to MetaCart
expected market returns which reflect this dependence are analyzed in this paper. Estimation procedures which incorporate the prior restriction that equilibrium expected excess returns on the market must be positive are derived and applied to return data for the period 19261978. The principal conclusions
Results 1 - 10
of
38,786