Results 1  10
of
11,684
Substructural Logics on Display
, 1998
"... Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen's sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek ca ..."
Abstract

Cited by 49 (16 self)
 Add to MetaCart
. These logics have been studied extensively and are quite well understood. Generalising further, one can start with intuitionistic BiLambek logic, which contains the dual of every connective from the Lambek calculus. The addition of the structural rules then gives Bilinear, Birelevant, BiBCK and Biintuitionistic
Logic Programming in a Fragment of Intuitionistic Linear Logic
, 1994
"... When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ..."
Abstract

Cited by 340 (44 self)
 Add to MetaCart
When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ
Uniform proofs as a foundation for logic programming
 ANNALS OF PURE AND APPLIED LOGIC
, 1991
"... A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its ..."
Abstract

Cited by 426 (122 self)
 Add to MetaCart
. Horn clauses are then generalized to hereditary Harrop formulas and it is shown that firstorder and higherorder versions of this new class of formulas are also abstract logic programming languages if the inference rules are those of either intuitionistic or minimal logic. The programming language
Computational Interpretations of Linear Logic
 Theoretical Computer Science
, 1993
"... We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluati ..."
Abstract

Cited by 318 (3 self)
 Add to MetaCart
We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order
On an Intuitionistic Modal Logic
 Studia Logica
, 2001
"... . In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study models ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
. In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study
ManyValued Modal Logics
 Fundamenta Informaticae
, 1992
"... . Two families of manyvalued modal logics are investigated. Semantically, one family is characterized using Kripke models that allow formulas to take values in a finite manyvalued logic, at each possible world. The second family generalizes this to allow the accessibility relation between worlds a ..."
Abstract

Cited by 270 (16 self)
 Add to MetaCart
also to be manyvalued. Gentzen sequent calculi are given for both versions, and soundness and completeness are established. 1 Introduction The logics that have appeared in artificial intelligence form a rich and varied collection. While classical (and maybe intuitionistic) logic su#ces for the formal
The Logic of Bunched Implications
 BULLETIN OF SYMBOLIC LOGIC
, 1999
"... We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication; it can be viewed as a merging of intuition ..."
Abstract

Cited by 222 (42 self)
 Add to MetaCart
We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication; it can be viewed as a merging
Strongly Equivalent Logic Programs
 ACM Transactions on Computational Logic
, 2000
"... A logic program 1 is said to be equivalent to a logic program 2 in the sense of the answer set semantics if 1 and 2 have the same answer sets. We are interested in the following stronger condition: for every logic program , 1 [ has the same answer sets as 2 [ . The study of strong equival ..."
Abstract

Cited by 229 (36 self)
 Add to MetaCart
andthere, which is intermediate between classical logic and intuitionistic logic. 1 Introduction This paper is about logic programs with negation as failure under the answer set (\stable model") semantics [ Gelfond and Lifschitz, 1988 ] . A program 1 is said to be equivalent to a program 2 if 1 and 2
Deep inference in Biintuitionistic logic
 In Int Workshop on Logic, Language, Information and Computation, WoLLIC 2009, LNAI 5514
, 2009
"... Abstract. Biintuitionistic logic is the extension of intuitionistic logic with exclusion, a connective dual to implication. Cutelimination in biintuitionistic logic is complicated due to the interaction between these two connectives, and various extended sequent calculi, including a display calcu ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. Biintuitionistic logic is the extension of intuitionistic logic with exclusion, a connective dual to implication. Cutelimination in biintuitionistic logic is complicated due to the interaction between these two connectives, and various extended sequent calculi, including a display
Results 1  10
of
11,684