Results 1  10
of
2,406,831
An Efficient Unification Algorithm
 TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS (TOPLAS)
, 1982
"... The unification problem in firstorder predicate calculus is described in general terms as the solution of a system of equations, and a nondeterministic algorithm is given. A new unification algorithm, characterized by having the acyclicity test efficiently embedded into it, is derived from the nond ..."
Abstract

Cited by 369 (1 self)
 Add to MetaCart
The unification problem in firstorder predicate calculus is described in general terms as the solution of a system of equations, and a nondeterministic algorithm is given. A new unification algorithm, characterized by having the acyclicity test efficiently embedded into it, is derived from
An Introduction to the Kalman Filter
 UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
, 1995
"... In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area o ..."
Abstract

Cited by 1132 (15 self)
 Add to MetaCart
of autonomous or assisted navigation.
The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports
An introduction to variational methods for graphical models
 TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
Equationbased congestion control for unicast applications
 SIGCOMM '00
, 2000
"... This paper proposes a mechanism for equationbased congestion control for unicast traffic. Most besteffort traffic in the current Internet is wellserved by the dominant transport protocol, TCP. However, traffic such as besteffort unicast streaming multimedia could find use for a TCPfriendly cong ..."
Abstract

Cited by 832 (29 self)
 Add to MetaCart
This paper proposes a mechanism for equationbased congestion control for unicast traffic. Most besteffort traffic in the current Internet is wellserved by the dominant transport protocol, TCP. However, traffic such as besteffort unicast streaming multimedia could find use for a TCP
Asymptotic Confidence Intervals for Indirect Effects in Structural EQUATION MODELS
 IN SOCIOLOGICAL METHODOLOGY
, 1982
"... ..."
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugategradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Results 1  10
of
2,406,831