Results 1  10
of
1,053,119
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 688 (9 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 659 (7 self)
 Add to MetaCart
, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision
Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching
, 2002
"... Matching elements of two data schemas or two data instances plays a key role in data warehousing, ebusiness, or even biochemical applications. In this paper we present a matching algorithm based on a fixpoint computation that is usable across different scenarios. The algorithm takes two graphs (sch ..."
Abstract

Cited by 575 (12 self)
 Add to MetaCart
(schemas, catalogs, or other data structures) as input, and produces as output a mapping between corresponding nodes of the graphs. Depending on the matching goal, a subset of the mapping is chosen using filters. After our algorithm runs, we expect a human to check and if necessary adjust the results. As a
Protocols for selforganization of a wireless sensor network
 IEEE Personal Communications
, 2000
"... We present a suite of algorithms for selforganization of wireless sensor networks, in which there is a scalably large number of mainly static nodes with highly constrained energy resources. The protocols further support slow mobility by a subset of the nodes, energyefficient routing, and formation ..."
Abstract

Cited by 519 (5 self)
 Add to MetaCart
We present a suite of algorithms for selforganization of wireless sensor networks, in which there is a scalably large number of mainly static nodes with highly constrained energy resources. The protocols further support slow mobility by a subset of the nodes, energyefficient routing
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Monetary Policy Shocks: What Have we Learned and to What End?
, 1998
"... This paper reviews recent research that grapples with the question: What happens after an exogenous shock to monetary policy? We argue that this question is interesting because it lies at the center of a particular approach to assessing the empirical plausibility of structural economic models that c ..."
Abstract

Cited by 967 (25 self)
 Add to MetaCart
effects of a monetary policy shock in the sense that inference is robust across a large subset of the identification schemes that have been considered in the literature. We document the nature of this agreement as
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Results 1  10
of
1,053,119