Results 1  10
of
12,203
Distributional Clustering Of English Words
 In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics
, 1993
"... We describe and evaluate experimentally a method for clustering words according to their dis tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used as the si ..."
Abstract

Cited by 629 (27 self)
 Add to MetaCart
We describe and evaluate experimentally a method for clustering words according to their dis tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 557 (29 self)
 Add to MetaCart
the "discrete gamma model," uses several categories of rates to approximate the gamma distribution, with equal probability for each category. The mean of each category is used to represent all the rates falling in the category. The performance of this method is found to be quite good
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 552 (18 self)
 Add to MetaCart
resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
the true marginal at each leaf is approximately (0.1, 0.9), i.e., the leaf is 1 with high probability. We then generated untypical evidence at the leaves by sampling from the uniform distribution, (0.5, 0.5), or from the skewed distribu tion (0.9, 0. 1). We found that loopy propagation still converged2
An Algorithm for Tracking Multiple Targets
 IEEE Transactions on Automatic Control
, 1979
"... Abstractâ€”An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m[~clngreports, and ..."
Abstract

Cited by 596 (0 self)
 Add to MetaCart
Abstractâ€”An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m
Principles of MixedInitiative User Interfaces
, 1999
"... Recent debate has centered on the relative promise of focusing userinterface research on developing new metaphors and tools that enhance users' abilities to directly manipulate objects versus directing effort toward developing interface agents that provide automation. In this paper, we review ..."
Abstract

Cited by 407 (23 self)
 Add to MetaCart
, direct manipulation, user modeling, probability, decision theory, UI design INTRODUCTION There has been debate among researchers about where great opportunities lay for innovating in the realm of human computer interaction [10]. One group of researchers has expressed enthusiasm for the development
Secret Key Agreement by Public Discussion From Common Information
 IEEE Transactions on Information Theory
, 1993
"... . The problem of generating a shared secret key S by two parties knowing dependent random variables X and Y , respectively, but not sharing a secret key initially, is considered. An enemy who knows the random variable Z, jointly distributed with X and Y according to some probability distribution PX ..."
Abstract

Cited by 434 (18 self)
 Add to MetaCart
. The problem of generating a shared secret key S by two parties knowing dependent random variables X and Y , respectively, but not sharing a secret key initially, is considered. An enemy who knows the random variable Z, jointly distributed with X and Y according to some probability distribution
Incentivecompatible debt contracts: The oneperiod problem
 Review of Economic Studies
, 1985
"... In a simple model of borrowing and lending with asymmetric information we show that the optimal, incentivecompatible debt contract is the standard debt contract. The secondbest level of investment never exceeds the firstbest and is strictly less when there is a positive probability of costly bank ..."
Abstract

Cited by 419 (9 self)
 Add to MetaCart
In a simple model of borrowing and lending with asymmetric information we show that the optimal, incentivecompatible debt contract is the standard debt contract. The secondbest level of investment never exceeds the firstbest and is strictly less when there is a positive probability of costly
Greedy layerwise training of deep networks
, 2006
"... Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multilayer neural networks have many levels of nonlinearities allow ..."
Abstract

Cited by 394 (48 self)
 Add to MetaCart
and extend it to cases where the inputs are continuous or where the structure of the input distribution is not revealing enough about the variable to be predicted in a supervised task. Our experiments also conrm the hypothesis that the greedy layerwise unsupervised training strategy mostly helps
Statistical shape influence in geodesic active contours
 In Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC
, 2000
"... A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero l ..."
Abstract

Cited by 396 (4 self)
 Add to MetaCart
A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero
Results 1  10
of
12,203