Results 1  10
of
58,435
Symbolic Boolean manipulation with ordered binarydecision diagrams
 ACM COMPUTING SURVEYS
, 1992
"... Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as grap ..."
Abstract

Cited by 1036 (13 self)
 Add to MetaCart
Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 726 (8 self)
 Add to MetaCart
learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 561 (20 self)
 Add to MetaCart
given the empirical loss of the individual binary learning algorithms. The scheme and the corresponding bounds apply to many popular classification learning algorithms including supportvector machines, AdaBoost, regression, logistic regression and decisiontree algorithms. We also give a multiclass
A capacity theory of comprehension: Individual differences in working memory
 Psychological Review
, 1992
"... A theory of the way working memory capacity constrains comprehension is proposed. The theory proposes that both processing and storage are mediated by activation and that the total amount of activation available in working memory varies among individuals. Individual differences in working memory cap ..."
Abstract

Cited by 700 (21 self)
 Add to MetaCart
A theory of the way working memory capacity constrains comprehension is proposed. The theory proposes that both processing and storage are mediated by activation and that the total amount of activation available in working memory varies among individuals. Individual differences in working memory
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1047 (23 self)
 Add to MetaCart
are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 1000 (13 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Performance Analysis of the IEEE 802.11 Distributed Coordination Function
, 2000
"... Recently, the IEEE has standardized the 802.11 protocol for Wireless Local Area Networks. The primary medium access control (MAC) technique of 802.11 is called distributed coordination function (DCF). DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slott ..."
Abstract

Cited by 1869 (1 self)
 Add to MetaCart
Recently, the IEEE has standardized the 802.11 protocol for Wireless Local Area Networks. The primary medium access control (MAC) technique of 802.11 is called distributed coordination function (DCF). DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1060 (1 self)
 Add to MetaCart
AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a
The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis
 COGNIT PSYCHOL
, 2000
"... This individual differences study examined the separability of three often postulated executive functions—mental set shifting ("Shifting"), information updating and monitoring ("Updating"), and inhibition of prepotent responses ("Inhibition")—and their roles in complex ..."
Abstract

Cited by 696 (9 self)
 Add to MetaCart
This individual differences study examined the separability of three often postulated executive functions—mental set shifting ("Shifting"), information updating and monitoring ("Updating"), and inhibition of prepotent responses ("Inhibition")—and their roles in complex
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 884 (34 self)
 Add to MetaCart
, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum
Results 1  10
of
58,435