• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 233,016
Next 10 →

Some optimal inapproximability results

by Johan Håstad , 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for Max-Ek-Sat for k * 3, maximizing the number of satisfied linear equations in an over-determined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract - Cited by 751 (11 self) - Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for Max-Ek-Sat for k * 3, maximizing the number of satisfied linear equations in an over-determined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds

Refactoring: Improving the Design of Existing Code

by Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts , 1999
"... As the application of object technology--particularly the Java programming language--has become commonplace, a new problem has emerged to confront the software development community. Significant numbers of poorly designed programs have been created by less-experienced developers, resulting in applic ..."
Abstract - Cited by 1898 (2 self) - Add to MetaCart
As the application of object technology--particularly the Java programming language--has become commonplace, a new problem has emerged to confront the software development community. Significant numbers of poorly designed programs have been created by less-experienced developers, resulting

Comparison of Multiobjective Evolutionary Algorithms: Empirical Results

by Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb , 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract - Cited by 628 (41 self) - Add to MetaCart
, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary

Making the most of statistical analyses: Improving interpretation and presentation

by Gary King, Michael Tomz, Jason Wittenberg - American Journal of Political Science , 2000
"... Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. ..."
Abstract - Cited by 600 (26 self) - Add to MetaCart
Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities

SPEA2: Improving the Strength Pareto Evolutionary Algorithm

by Eckart Zitzler, Marco Laumanns, Lothar Thiele , 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Pareto-optimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract - Cited by 708 (19 self) - Add to MetaCart
, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern

Improved Boosting Algorithms Using Confidence-rated Predictions

by Robert E. Schapire , Yoram Singer - MACHINE LEARNING , 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract - Cited by 940 (26 self) - Add to MetaCart
We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find

Fibonacci Heaps and Their Uses in Improved Network optimization algorithms

by Michael L. Fredman, Robert Endre Tarjan , 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) amortized tim ..."
Abstract - Cited by 739 (18 self) - Add to MetaCart
matching), improved from O(nm log0dn+2)n); (4) O(mj3(m, n)) for the minimum spanning tree problem, improved from O(mloglo&,,.+2,n), where j3(m, n) = min {i 1 log % 5 m/n). Note that B(m, n) 5 log*n if m 2 n. Of these results, the improved bound for minimum spanning trees is the most striking, although

The file drawer problem and tolerance for null results

by Robert Rosenthal - Psychological Bulletin , 1979
"... For any given research area, one cannot tell how many studies have been con-ducted but never reported. The extreme view of the "file drawer problem " is that journals are filled with the 5 % of the studies that show Type I errors, while the file drawers are filled with the 95 % of the stud ..."
Abstract - Cited by 497 (0 self) - Add to MetaCart
% of the studies that show non-significant results. Quantitative procedures for computing the tolerance for filed and future null results are reported and illustrated, and the implications are discussed. Both behavioral researchers and statisti-cians have long suspected that the studies published in the behavioral

A comparison of mechanisms for improving TCP performance over wireless links

by Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, Randy H. Katz - IEEE/ACM TRANSACTIONS ON NETWORKING , 1997
"... Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant losses due to bit errors and handoffs. TCP responds to all losses by i ..."
Abstract - Cited by 927 (11 self) - Add to MetaCart
by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. In this paper, we compare several schemes designed to improve the performance of TCP in such networks. We classify these schemes into three broad categories: end

Analysis of TCP Performance over Mobile Ad Hoc Networks Part I: Problem Discussion and Analysis of Results

by Gavin Holland, Nitin Vaidya , 1999
"... Mobile ad hoc networks have gained a lot of attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recently, a large amount of research has focused on the routing protocols needed in such an environment. In this two-part ..."
Abstract - Cited by 521 (5 self) - Add to MetaCart
improve TCP performance. In this paper (Part I of the report), we present the problem and an analysis of our simulation results. In Part II of this report, we present the simulation and results in detail.
Next 10 →
Results 1 - 10 of 233,016
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University