• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 132,770
Next 10 →

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have

Statistics and causal inference.

by Paul W Holland - J. Am. Statist. Assoc., , 1986
"... Problems involving causal inference have dogged at the heels of statistics since its earliest days. Correlation does not imply causation, and yet causal conclusions drawn from a carefully designed experiment are often valid. What can a statistical model say about causation? This question is address ..."
Abstract - Cited by 736 (1 self) - Add to MetaCart
Problems involving causal inference have dogged at the heels of statistics since its earliest days. Correlation does not imply causation, and yet causal conclusions drawn from a carefully designed experiment are often valid. What can a statistical model say about causation? This question

Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms

by Jonathan S. Yedidia, William T. Freeman, Yair Weiss - IEEE Transactions on Information Theory , 2005
"... Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract - Cited by 585 (13 self) - Add to MetaCart
Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems

Graphical models, exponential families, and variational inference

by Martin J. Wainwright, Michael I. Jordan , 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract - Cited by 819 (28 self) - Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes

Stochastic volatility: likelihood inference and comparison with ARCH models

by Sangjoon Kim, Salomon Brothers, Asia Limited, Neil Shephard - Review of Economic Studies , 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract - Cited by 592 (40 self) - Add to MetaCart
offset mixture model, followed by an importance reweighting procedure. This approach is compared with several alternative methods using real data. The paper also develops simulation-based methods for filtering, likelihood evaluation and model failure diagnostics. The issue of model choice using non

Bayesian density estimation and inference using mixtures.

by Michael D Escobar , Mike West - J. Amer. Statist. Assoc. , 1995
"... JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about J ..."
Abstract - Cited by 653 (18 self) - Add to MetaCart
mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates

Probabilistic Inference Using Markov Chain Monte Carlo Methods

by Radford M. Neal , 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over high-dimensional spaces. R ..."
Abstract - Cited by 736 (24 self) - Add to MetaCart
physics for over forty years, and, in the last few years, the related method of "Gibbs sampling" has been applied to problems of statistical inference. Concurrently, an alternative method for solving problems in statistical physics by means of dynamical simulation has been developed as well

Variational algorithms for approximate Bayesian inference

by Matthew J. Beal , 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract - Cited by 440 (9 self) - Add to MetaCart
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents

Loopy belief propagation for approximate inference: An empirical study. In:

by Kevin P Murphy , Yair Weiss , Michael I Jordan - Proceedings of Uncertainty in AI, , 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" -the use of Pearl's polytree algorithm in a Bayesian network with loops -can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performanc ..."
Abstract - Cited by 676 (15 self) - Add to MetaCart
-limit performance of "Turbo Codes" -codes whose decoding algorithm is equivalent to loopy belief propagation in a chain-structured Bayesian network. In this paper we ask: is there something spe cial about the error-correcting code context, or does loopy propagation work as an ap proximate inference scheme

The link-prediction problem for social networks

by David Liben-nowell, Jon Kleinberg - J. AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY , 2007
"... Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the link-prediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a ne ..."
Abstract - Cited by 906 (6 self) - Add to MetaCart
Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the link-prediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a
Next 10 →
Results 1 - 10 of 132,770
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University