• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 427,505
Next 10 →

Maximum likelihood from incomplete data via the EM algorithm

by A. P. Dempster, N. M. Laird, D. B. Rubin - JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract - Cited by 11972 (17 self) - Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.

An Image Data Model

by William I. Grosky, Peter L. Stanchev - in Advances in Visual Information Systems, R. Laurini (edt.), Lecture Notes in Computer Science , 2000
"... In this paper, we analyze the existing approaches to image data modeling and we propose an image dam model and a particular image representation in the proposed model. This model establishes a taxonomy based on the systematization on the existing approaches. The image layouts in the model are de ..."
Abstract - Cited by 12 (7 self) - Add to MetaCart
In this paper, we analyze the existing approaches to image data modeling and we propose an image dam model and a particular image representation in the proposed model. This model establishes a taxonomy based on the systematization on the existing approaches. The image layouts in the model

Deformable models in medical image analysis: A survey

by Tim Mcinerney, Demetri Terzopoulos - Medical Image Analysis , 1996
"... This article surveys deformable models, a promising and vigorously researched computer-assisted medical image analysis technique. Among model-based techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They hav ..."
Abstract - Cited by 591 (7 self) - Add to MetaCart
. They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge about the location, size, and shape of these structures. Deformable models are capable of accommodating

Data networks

by L. Verger G, E. Gros D'aillon G, P. Major H, G. Németh H , 1992
"... a b s t r a c t In this paper we illustrate the core technologies at the basis of the European SPADnet project (www. spadnet.eu), and present the corresponding first results. SPADnet is aimed at a new generation of MRI-compatible, scalable large area image sensors, based on CMOS technology, that are ..."
Abstract - Cited by 2210 (5 self) - Add to MetaCart
a b s t r a c t In this paper we illustrate the core technologies at the basis of the European SPADnet project (www. spadnet.eu), and present the corresponding first results. SPADnet is aimed at a new generation of MRI-compatible, scalable large area image sensors, based on CMOS technology

A volumetric method for building complex models from range images,”

by Brian Curless , Marc Levoy - in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, , 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract - Cited by 1020 (17 self) - Add to MetaCart
with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align

Imagenet: A large-scale hierarchical image database

by Jia Deng, Wei Dong, Richard Socher, Li-jia Li, Kai Li, Li Fei-fei - In CVPR , 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract - Cited by 840 (28 self) - Add to MetaCart
The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce

Modeling annotated data

by David M. Blei, Michael I. Jordan - IN PROC. OF THE 26TH INTL. ACM SIGIR CONFERENCE , 2003
"... We consider the problem of modeling annotated data—data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models that are aimed at such data, culminating in the Cor ..."
Abstract - Cited by 443 (12 self) - Add to MetaCart
We consider the problem of modeling annotated data—data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models that are aimed at such data, culminating

Models and issues in data stream systems

by Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer Widom - IN PODS , 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams. In addition to reviewing past work releva ..."
Abstract - Cited by 786 (19 self) - Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams. In addition to reviewing past work

Atmospheric Modeling, Data Assimilation and Predictability

by Eugenia Kalnay , 2003
"... Numerical weather prediction (NWP) now provides major guidance in our daily weather forecast. The accuracy of NWP models has improved steadily since the first successful experiment made by Charney, Fj!rtoft and von Neuman (1950). During the past 50 years, a large number of technical papers and repor ..."
Abstract - Cited by 626 (33 self) - Add to MetaCart
of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of NWP, equations of motion and their approximations, a modern description of the methods to determine the initial conditions using weather observations and a clear

Limma: linear models for microarray data

by Gordon K. Smyth, Matthew Ritchie, Natalie Thorne, James Wettenhall, Wei Shi - Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005
"... This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract - Cited by 774 (13 self) - Add to MetaCart
This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
Next 10 →
Results 1 - 10 of 427,505
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University