• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 34,877
Next 10 →

Similarity of Color Images

by Markus Stricker, Markus Orengo , 1995
"... We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 -, L 2 -, or L1 -distance between two cumulative color histograms can be used to define a similarity mea ..."
Abstract - Cited by 495 (2 self) - Add to MetaCart
measure of these two color distributions. We show that while this method produces only slightly better results than color histogram methods, it is more robust with respect to the quantization parameter of the histograms. The second technique is an example of a new approach to color indexing. Instead

Distinctive Image Features from Scale-Invariant Keypoints

by David G. Lowe , 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract - Cited by 8955 (21 self) - Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

by Michael Lustig, David Donoho, John M. Pauly - MAGNETIC RESONANCE IN MEDICINE 58:1182–1195 , 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract - Cited by 538 (11 self) - Add to MetaCart
demonstrate improved spatial resolution and accelerated acquisition for multislice fast spinecho brain imaging and 3D contrast enhanced angiography.

Real-time human pose recognition in parts from single depth images

by Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake - IN CVPR , 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract - Cited by 568 (17 self) - Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler

Compressive sampling

by Emmanuel J. Candès , 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract - Cited by 1441 (15 self) - Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired

Active Appearance Models.

by Timothy F Cootes , Gareth J Edwards , Christopher J Taylor - IEEE Transactions on Pattern Analysis and Machine Intelligence, , 2001
"... AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations ..."
Abstract - Cited by 2154 (59 self) - Add to MetaCart
AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations

Learning low-level vision

by William T. Freeman, Egon C. Pasztor - International Journal of Computer Vision , 2000
"... We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract - Cited by 579 (30 self) - Add to MetaCart
We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently

Reflectance and texture of real-world surfaces

by Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, Jan J. Koenderink - ACM TRANS. GRAPHICS , 1999
"... In this work, we investigate the visual appearance of real-world surfaces and the dependence of appearance on scale, viewing direction and illumination direction. At ne scale, surface variations cause local intensity variation or image texture. The appearance of this texture depends on both illumina ..."
Abstract - Cited by 590 (23 self) - Add to MetaCart
of the BRDF measurements, we t the measurements to two recent models and obtain a BRDF parameter database. These parameters can be used directly in image analysis and synthesis of a wide variety of surfaces. The BTF, BRDF, and BRDF parameter databases have important implications for computer vision

Face Recognition Based on Fitting a 3D Morphable Model

by Volker Blanz, Thomas Vetter - IEEE TRANS. PATTERN ANAL. MACH. INTELL , 2003
"... This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D ..."
Abstract - Cited by 551 (19 self) - Add to MetaCart
model, an algorithm to fit the model to images, and a framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET

Three-dimensional object recognition from single two-dimensional images

by David G. Lowe - Artificial Intelligence , 1987
"... A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single gray-scale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottom-up from the visual input. Instead, ..."
Abstract - Cited by 484 (7 self) - Add to MetaCart
, a probabilistic ranking method is used to reduce the size of the search space during model based matching. Finally, a process of spatial correspondence brings the projections of three-dimensional models into direct correspondence with the image by solving for unknown viewpoint and model parameters
Next 10 →
Results 1 - 10 of 34,877
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University