• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 20,027
Next 10 →

Image Quality Assessment: From Error Visibility to Structural Similarity

by Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, Eero P. Simoncelli - IEEE TRANSACTIONS ON IMAGE PROCESSING , 2004
"... Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapt ..."
Abstract - Cited by 1499 (114 self) - Add to MetaCart
Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly

Relations between the statistics of natural images and the response properties of cortical cells

by David J. Field - J. Opt. Soc. Am. A , 1987
"... The relative efficiency of any particular image-coding scheme should be defined only in relation to the class of images that the code is likely to encounter. To understand the representation of images by the mammalian visual system, it might therefore be useful to consider the statistics of images f ..."
Abstract - Cited by 831 (18 self) - Add to MetaCart
cells are well suited for coding the information in such images if the goal of the code is to convert higher-order redundancy (e.g., correlation between the intensities of neighboring pixels) into first-order redundancy (i.e., the response distribution of the coefficients). Such coding produces a

Recovering High Dynamic Range Radiance Maps from Photographs

by Paul E. Debevec, Jitendra Malik
"... We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the respon ..."
Abstract - Cited by 859 (15 self) - Add to MetaCart
the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene

Marching cubes: A high resolution 3D surface construction algorithm

by William E. Lorensen, Harvey E. Cline - COMPUTER GRAPHICS , 1987
"... We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical d ..."
Abstract - Cited by 2696 (4 self) - Add to MetaCart
data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the original data, normalize it, and use it as a basis for shading the models. The detail in images produced from the generated surface models is the result of maintaining the inter

Scale-space and edge detection using anisotropic diffusion

by Pietro Perona, Jitendra Malik - IEEE Transactions on Pattern Analysis and Machine Intelligence , 1990
"... Abstract-The scale-space technique introduced by Witkin involves generating coarser resolution images by convolving the original image with a Gaussian kernel. This approach has a major drawback: it is difficult to obtain accurately the locations of the “semantically mean-ingful ” edges at coarse sca ..."
Abstract - Cited by 1887 (1 self) - Add to MetaCart
that the “no new maxima should be generated at coarse scales ” property of conventional scale space is pre-served. As the region boundaries in our approach remain sharp, we obtain a high quality edge detector which successfully exploits global information. Experimental results are shown on a number of images

QSplat: A Multiresolution Point Rendering System for Large Meshes

by Szymon Rusinkiewicz, Marc Levoy , 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract - Cited by 502 (8 self) - Add to MetaCart
, and refines progressively when idle to a high final image quality. We have demonstrated the system on scanned models containing hundreds of millions of samples.

Fast texture synthesis using tree-structured vector quantization

by Li-yi Wei, Marc Levoy , 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract - Cited by 561 (12 self) - Add to MetaCart
and capable of generating high quality results. In this paper, we present an efficient algorithm for realistic texture synthesis. The algorithm is easy to use and requires only a sample texture as input. It generates textures with perceived quality equal to or better than those produced by previous techniques

Histograms of Oriented Gradients for Human Detection

by Navneet Dalal, Bill Triggs - In CVPR , 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract - Cited by 3735 (9 self) - Add to MetaCart
outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks

Clustering by passing messages between data points

by Brendan J. Frey, Delbert Dueck - Science , 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract - Cited by 696 (8 self) - Add to MetaCart
if that initial choice is close to a good solution. We devised a method called “affinity propagation,” which takes as input measures of similarity between pairs of data points. Real-valued messages are exchanged between data points until a high-quality set of exemplars and corresponding clusters gradually emerges

The BSD Packet Filter: A New Architecture for User-level Packet Capture

by Steven Mccanne, Van Jacobson , 1992
"... Many versions of Unix provide facilities for user-level packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as user-level processes, packets must be copied across the kernel/user-space protection boundary. This copying can be m ..."
Abstract - Cited by 568 (2 self) - Add to MetaCart
filter evaluator that is up to 20 times faster than the original design. BPF also uses a straightforward buffering strategy that makes its overall performance up to 100 times faster than Sun's NIT running on the same hardware. 1 Introduction Unix has become synonymous with high quality networking
Next 10 →
Results 1 - 10 of 20,027
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University