Results 1 - 10
of
21,070
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract
-
Cited by 836 (84 self)
- Add to MetaCart
the biological feasibility of this class of models to explain higher level visual processing, such as object recognition. We describe a new hierarchical model that accounts well for this complex visual task, is consistent with several recent physiological experiments in inferotemporal cortex and makes testable
Hierarchical model-based motion estimation
, 1992
"... This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel that ..."
Abstract
-
Cited by 664 (15 self)
- Add to MetaCart
This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel
Prior distributions for variance parameters in hierarchical models
- Bayesian Analysis
, 2006
"... Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors i ..."
Abstract
-
Cited by 430 (15 self)
- Add to MetaCart
Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors
A bayesian hierarchical model for learning natural scene categories
- In CVPR
, 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract
-
Cited by 948 (15 self)
- Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region is represented as part of a “theme”. In previous work, such themes were learnt from hand-annotations of experts, while our method learns the theme distributions as well as the codewords distribution over the themes without supervision. We report satisfactory categorization performances on a large set of 13 categories of complex scenes. 1.
A hierarchical model of approach and avoidance achievement motivation
- Journal of Personality and Social Psychology
, 1997
"... A hierarchical model of approach and avoidance achievement motivation was proposed and tested in a college classroom. Mastery, performance-approach, and performance-avoidance goals were assessed and their antecedents and consequences examined. Results indicated that mastery goals were grounded in ac ..."
Abstract
-
Cited by 377 (31 self)
- Add to MetaCart
A hierarchical model of approach and avoidance achievement motivation was proposed and tested in a college classroom. Mastery, performance-approach, and performance-avoidance goals were assessed and their antecedents and consequences examined. Results indicated that mastery goals were grounded
Hierarchical Modelling and Analysis for Spatial Data. Chapman and Hall/CRC,
, 2004
"... Abstract Often, there are two streams in statistical research -one developed by practitioners and other by main stream statisticians. Development of geostatistics is a very good example where pioneering work under realistic assumptions came from mining engineers whereas it is only now that statisti ..."
Abstract
-
Cited by 442 (45 self)
- Add to MetaCart
for parametric models. The method of maximum likelihood was introduced by R.A. Fisher as early as 1931 but its application in geostatistics for inference of variogram parameters has been slow and it was first introduced by Mardia (1980) -incidently, this paper was presented to the Geological Congress in Paris
Hierarchical Models
, 2003
"... Hierarchical models are central to many current analyses of functional imaging data including random effects analysis, models using fMRI as priors for EEG source localization and spatiotemporal Bayesian modelling of imaging data [3]. These hierarchical models posit linear relations between variables ..."
Abstract
-
Cited by 6 (0 self)
- Add to MetaCart
Hierarchical models are central to many current analyses of functional imaging data including random effects analysis, models using fMRI as priors for EEG source localization and spatiotemporal Bayesian modelling of imaging data [3]. These hierarchical models posit linear relations between
Hierarchical Dirichlet processes.
- Journal of the American Statistical Association,
, 2006
"... We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this s ..."
Abstract
-
Cited by 942 (78 self)
- Add to MetaCart
consider a hierarchical model, specifically one in which the base measure for the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet processes necessarily share atoms. Thus, as desired, the mixture models
Hierarchical phrase-based translation
- Computational Linguistics
, 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract
-
Cited by 597 (9 self)
- Add to MetaCart
We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a max-imum likelihood ..."
Abstract
-
Cited by 885 (21 self)
- Add to MetaCart
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a max-imum likelihood
Results 1 - 10
of
21,070