Results 1  10
of
21,127
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 639 (15 self)
 Add to MetaCart
methods are limited to using MRF as a general prior in an FM modelbased approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRFEM framework, an accurate and robust segmentation can be achieved. More importantly
Blobworld: Image segmentation using ExpectationMaximization and its application to image querying
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1999
"... Retrieving images from large and varied collections using image content as a key is a challenging and important problem. We present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture. This "B ..."
Abstract

Cited by 438 (10 self)
 Add to MetaCart
;Blobworld" representation is created by clustering pixels in a joint colortextureposition feature space. The segmentation algorithm is fully automatic and has been run on a collection of 10,000 natural images. We describe a system that uses the Blobworld representation to retrieve images from this collection
Fitting a mixture model by expectation maximization to discover motifs in biopolymers.
 Proc Int Conf Intell Syst Mol Biol
, 1994
"... Abstract The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expect~tiou ma.,dmization to fit a twocomponent finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model to th ..."
Abstract

Cited by 947 (5 self)
 Add to MetaCart
Abstract The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expect~tiou ma.,dmization to fit a twocomponent finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 683 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Scheduling Algorithms for Multiprogramming in a HardRealTime Environment
, 1973
"... The problem of multiprogram scheduling on a single processor is studied from the viewpoint... ..."
Abstract

Cited by 3756 (3 self)
 Add to MetaCart
The problem of multiprogram scheduling on a single processor is studied from the viewpoint...
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIMâ€™s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 885 (21 self)
 Add to MetaCart
problem; in particular, we present an ExpectationMaximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1246 (5 self)
 Add to MetaCart
to minimize the conventional least squares error while the other minimizes the generalized KullbackLeibler divergence. The monotonic convergence of both algorithms can be proven using an auxiliary function analogous to that used for proving convergence of the ExpectationMaximization algorithm
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 993 (18 self)
 Add to MetaCart
estimation problem. A variant of the algorithm that exploits sparse conditional distributions is also described, and a wide range of other variant algorithms are also seen to be possible. 1. Introduction The ExpectationMaximization (EM) algorithm finds maximum likelihood parameter estimates in problems
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
Results 1  10
of
21,127