Results 1  10
of
796,450
A generalized processor sharing approach to flow control in integrated services networks: The singlenode case
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1993
"... The problem of allocating network resources to the users of an integrated services network is investigated in the context of ratebased flow control. The network is assumed to be a virtual circuit, connectionbased packet network. We show that the use of Generalized processor Sharing (GPS), when co ..."
Abstract

Cited by 1994 (5 self)
 Add to MetaCart
combined with Leaky Bucket admission control, allows the network to make a wide range of worstcase performance guarantees on throughput and delay. The scheme is flexible in that different users may be given widely different performance guarantees, and is efficient in that each of the servers is work
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 698 (15 self)
 Add to MetaCart
and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petrochemical and related industries where satisfaction of constraints is particularly
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 409 (21 self)
 Add to MetaCart
of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result
The Distributed Constraint Satisfaction Problem: Formalization and Algorithms
 IEEE Transactions on Knowledge and Data Engineering
, 1998
"... In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various applica ..."
Abstract

Cited by 321 (28 self)
 Add to MetaCart
In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various
Learning from demonstration
 Advances in Neural Information Processing Systems 9
, 1997
"... By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstra ..."
Abstract

Cited by 392 (32 self)
 Add to MetaCart
By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstrations of other humans. For learning control, this paper investigates how learning from demonstration can be applied in the context of reinforcement learning. We consider priming the Qfunction, the value function, the policy, and the model of the task dynamics as possible areas where demonstrations can speed up learning. In general nonlinear learning problems, only modelbased reinforcement learning shows significant speedup after a demonstration, while in the special case of linear quadratic regulator (LQR) problems, all methods profit from the demonstration. In an implementation of pole balancing on a complex anthropomorphic robot arm, we demonstrate that, when facing the complexities of real signal processing, modelbased reinforcement learning offers the most robustness for LQR problems. Using the suggested methods, the robot learns pole balancing in just a single trial after a 30 second long demonstration of the human instructor. 1.
The generalized distributive law
 Information Theory, IEEE Transactions on
"... Abstract—In this semitutorial paper we discuss a general message passing algorithm, which we call the generalized distributive law (GDL). The GDL is a synthesis of the work of many authors in the information theory, digital communications, signal processing, statistics, and artificial intelligence ..."
Abstract

Cited by 358 (2 self)
 Add to MetaCart
algorithm, and the turbo decoding algorithm. Although this algorithm is guaranteed to give exact answers only in certain cases (the “junction tree ” condition), unfortunately not including the cases of GTW with cycles or turbo decoding, there is much experimental evidence, and a few theorems, suggesting
Model Checking and Modular Verification
 ACM Transactions on Programming Languages and Systems
, 1991
"... We describe a framework for compositional verification of finite state processes. The framework is based on two ideas: a subset of the logic CTL for which satisfaction is preserved under composition; and a preorder on structures which captures the relation between a component and a system containing ..."
Abstract

Cited by 309 (11 self)
 Add to MetaCart
containing the component. Satisfaction of a formula in the logic corresponds to being below a particular structure (a tableau for the formula) in the preorder. We show how to do assumeguarantee style reasoning within this framework. In addition, we demonstrate efficient methods for model checking
Bucket Elimination: A Unifying Framework for Reasoning
"... Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian elimination ..."
Abstract

Cited by 294 (58 self)
 Add to MetaCart
Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian
Network Centric Warfare: Developing and Leveraging Information Superiority
 Command and Control Research Program (CCRP), US DoD
, 2000
"... the mission of improving DoD’s understanding of the national security implications of the Information Age. Focusing upon improving both the state of the art and the state of the practice of command and control, the CCRP helps DoD take full advantage of the opportunities afforded by emerging technolo ..."
Abstract

Cited by 308 (5 self)
 Add to MetaCart
the mission of improving DoD’s understanding of the national security implications of the Information Age. Focusing upon improving both the state of the art and the state of the practice of command and control, the CCRP helps DoD take full advantage of the opportunities afforded by emerging technologies. The CCRP pursues a broad program of research and analysis in information superiority, information operations, command and control theory, and associated operational concepts that enable us to leverage shared awareness to improve the effectiveness and efficiency of assigned missions. An important aspect of the CCRP program is its ability to serve as a bridge between the operational, technical, analytical, and educational communities. The CCRP provides leadership for the command and control research community by: n n
A RiskFactor Model Foundation for RatingsBased Bank Capital Rules
 Journal of Financial Intermediation
, 2003
"... When economic capital is calculated using a portfolio model of credit valueatrisk, the marginal capital requirement for an instrument depends, in general, on the properties of the portfolio in which it is held. By contrast, ratingsbased capital rules, including both the current Basel Accord and i ..."
Abstract

Cited by 283 (1 self)
 Add to MetaCart
When economic capital is calculated using a portfolio model of credit valueatrisk, the marginal capital requirement for an instrument depends, in general, on the properties of the portfolio in which it is held. By contrast, ratingsbased capital rules, including both the current Basel Accord and its proposed revision, assign a capital charge to an instrument based only on its own characteristics. I demonstrate that ratingsbased capital rules can be reconciled with the general class of credit VaR models. Contributions to VaR are portfolioinvariant only if (a) there is only a single systematic risk factor driving correlations across obligors, and (b) no exposure in a portfolio accounts for more than an arbitrarily small share of total exposure. Analysis of rates of convergence to asymptotic VaR leads to a simple and accurate portfoliolevel addon charge for undiversified idiosyncratic risk. There is no similarly simple way to address violation of the single factor assumption.
Results 1  10
of
796,450