Results 1  10
of
899,072
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 532 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
General DiagramRecognition Methodologies
 Proc. Int. Workshop on Graphics Recognition
, 1995
"... this paper. While we find it useful to discuss diagram recognition in terms of the above six processes, the processes are not necessarily clearly delineated in an implementation, and they need not be performed in the indicated order. For example, partial identification of spatial and logical relatio ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
this paper. While we find it useful to discuss diagram recognition in terms of the above six processes, the processes are not necessarily clearly delineated in an implementation, and they need not be performed in the indicated order. For example, partial identification of spatial and logical
An algorithm for drawing general undirected graphs
 Information Processing Letters
, 1989
"... Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets, and entit ..."
Abstract

Cited by 688 (2 self)
 Add to MetaCart
Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets
Statecharts: A Visual Formalism For Complex Systems
, 1987
"... We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we cal ..."
Abstract

Cited by 2673 (56 self)
 Add to MetaCart
We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we
Symbolic Model Checking: 10^20 States and Beyond
, 1992
"... Many different methods have been devised for automatically verifying finite state systems by examining stategraph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of st ..."
Abstract

Cited by 749 (41 self)
 Add to MetaCart
of states. We describe a general method that represents the state space symbolical/y instead of explicitly. The generality of our method comes from using a dialect of the MuCalculus as the primary specification language. We describe a model checking algorithm for MuCalculus formulas that uses Bryantâ€™s
Impulses and Physiological States in Theoretical Models of Nerve Membrane
 Biophysical Journal
, 1961
"... ABSTRACT Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of nonlinear differential equations with either a stable singular point or a limit cycle. The resulting "BVP model " has two variables of state, representing excitabi ..."
Abstract

Cited by 496 (0 self)
 Add to MetaCart
ABSTRACT Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of nonlinear differential equations with either a stable singular point or a limit cycle. The resulting "BVP model " has two variables of state, representing
Coverage Problems in Wireless Adhoc Sensor Networks
 in IEEE INFOCOM
, 2001
"... Wireless adhoc sensor networks have recently emerged as a premier research topic. They have great longterm economic potential, ability to transform our lives, and pose many new systembuilding challenges. Sensor networks also pose a number of new conceptual and optimization problems. Some, such as ..."
Abstract

Cited by 429 (9 self)
 Add to MetaCart
, such as location, deployment, and tracking, are fundamental issues, in that many applications rely on them for needed information. In this paper, we address one of the fundamental problems, namely coverage. Coverage in general, answers the questions about quality of service (surveillance) that can be provided
Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
, 1999
"... We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation of ..."
Abstract

Cited by 232 (25 self)
 Add to MetaCart
We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation
External Cognition: How do Graphical Representations Work?
 INTERNATIONAL JOURNAL OF HUMANCOMPUTER STUDIES
, 1996
"... Advances in graphical technology have now made it possible for us to interact with information in innovative ways, most notably by exploring multimedia environments and by manipulating threedimensional virtual worlds. Many benefits have been claimed for this new kind of interactivity, a general ass ..."
Abstract

Cited by 333 (27 self)
 Add to MetaCart
Advances in graphical technology have now made it possible for us to interact with information in innovative ways, most notably by exploring multimedia environments and by manipulating threedimensional virtual worlds. Many benefits have been claimed for this new kind of interactivity, a general
Results 1  10
of
899,072