Results 1  10
of
35,911
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds
 MATH. OF COMPUTATION
, 1997
"... We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions are combine ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions
The Semantics Of Constraint Logic Programs
 JOURNAL OF LOGIC PROGRAMMING
, 1996
"... This paper presents for the first time the semantic foundations of CLP in a selfcontained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new and comp ..."
Abstract

Cited by 872 (14 self)
 Add to MetaCart
and complete proofs for the main lemmas. Importantly, we clarify which theorems depend on conditions such as solution compactness, satisfaction completeness and independence of constraints. Second, we generalize the original results to allow for incompleteness of the constraint solver. This is important
Concurrent Constraint Programming
, 1993
"... This paper presents a new and very rich class of (concurrent) programming languages, based on the notion of comput.ing with parhal information, and the concommitant notions of consistency and entailment. ’ In this framework, computation emerges from the interaction of concurrently executing agent ..."
Abstract

Cited by 502 (16 self)
 Add to MetaCart
agents that communicate by placing, checking and instantiating constraints on shared variables. Such a view of computation is interesting in the context of programming languages because of the ability to represent and manipulate partial information about the domain of discourse, in the con
House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle
, 2002
"... I develop a general equilibrium model with sticky prices, credit constraints, nominal loans and asset prices. Changes in asset prices modify agents ’ borrowing capacity through collateral value; changes in nominal prices affect real repayments through debt deflation. Monetary policy shocks move asse ..."
Abstract

Cited by 512 (10 self)
 Add to MetaCart
I develop a general equilibrium model with sticky prices, credit constraints, nominal loans and asset prices. Changes in asset prices modify agents ’ borrowing capacity through collateral value; changes in nominal prices affect real repayments through debt deflation. Monetary policy shocks move
Partial Constraint Satisfaction
, 1992
"... . A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying ..."
Abstract

Cited by 471 (21 self)
 Add to MetaCart
satisfaction problems illuminates the relative and absolute effectiveness of these methods. A general model of partial constraint satisfaction is proposed. 1 Introduction Constraint satisfaction involves finding values for problem variables subject to constraints on acceptable combinations of values
Mining Sequential Patterns: Generalizations and Performance Improvements
 RESEARCH REPORT RJ 9994, IBM ALMADEN RESEARCH
, 1995
"... The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a userspecified ..."
Abstract

Cited by 759 (5 self)
 Add to MetaCart
generalize the problem as follows. First, we add time constraints that specify a minimum and/or maximum time period between adjacent elements in a pattern. Second, we relax the restriction that the items in an element of a sequential pattern must come from the same transaction, instead allowing the items
Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of nalkanes
 J. Comput. Phys
, 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract

Cited by 704 (6 self)
 Add to MetaCart
A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 529 (35 self)
 Add to MetaCart
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in ND Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract

Cited by 1010 (20 self)
 Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph
Results 1  10
of
35,911