Results 1  10
of
6,210
Mining Generalized Association Rules
, 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract

Cited by 591 (7 self)
 Add to MetaCart
We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 582 (53 self)
 Add to MetaCart
a more general tractable special case, and design algorithms for solving it as well as for solving known tractable special cases substantially faster. We generalize combinatorial auctions to multiple units of each item, to reserve prices on singletons as well as combinations, and to combinatorial
Mining Sequential Patterns: Generalizations and Performance Improvements
 RESEARCH REPORT RJ 9994, IBM ALMADEN RESEARCH
, 1995
"... The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a userspecified ..."
Abstract

Cited by 759 (5 self)
 Add to MetaCart
these generalized sequential patterns. Empirical evaluation using synthetic and reallife data indicates that GSP is much faster than the AprioriAll algorithm presented in [3]. GSP scales linearly with the number of datasequences, and has very good scaleup properties with respect to the average datasequence size.
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 724 (15 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the
Program Analysis and Specialization for the C Programming Language
, 1994
"... Software engineers are faced with a dilemma. They want to write general and wellstructured programs that are flexible and easy to maintain. On the other hand, generality has a price: efficiency. A specialized program solving a particular problem is often significantly faster than a general program. ..."
Abstract

Cited by 629 (0 self)
 Add to MetaCart
Software engineers are faced with a dilemma. They want to write general and wellstructured programs that are flexible and easy to maintain. On the other hand, generality has a price: efficiency. A specialized program solving a particular problem is often significantly faster than a general program
Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search
, 1996
"... Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning pr ..."
Abstract

Cited by 579 (33 self)
 Add to MetaCart
Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning
The BSD Packet Filter: A New Architecture for Userlevel Packet Capture
, 1992
"... Many versions of Unix provide facilities for userlevel packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as userlevel processes, packets must be copied across the kernel/userspace protection boundary. This copying can be m ..."
Abstract

Cited by 568 (2 self)
 Add to MetaCart
Many versions of Unix provide facilities for userlevel packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as userlevel processes, packets must be copied across the kernel/userspace protection boundary. This copying can
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 696 (62 self)
 Add to MetaCart
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 713 (0 self)
 Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental
OBBTree: A hierarchical structure for rapid interference detection
 PROC. ACM SIGGRAPH, 171–180
, 1996
"... We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented bo ..."
Abstract

Cited by 845 (53 self)
 Add to MetaCart
We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented
Results 1  10
of
6,210