Results 1  10
of
51,075
Experimental Estimates of Education Production Functions
 Princeton University, Industrial Relations Section Working Paper No. 379
, 1997
"... This paper analyzes data on 11,600 students and their teachers who were randomly assigned to different size classes from kindergarten through third grade. Statistical methods are used to adjust for nonrandom attrition and transitions between classes. The main conclusions are (1) on average, performa ..."
Abstract

Cited by 529 (19 self)
 Add to MetaCart
This paper analyzes data on 11,600 students and their teachers who were randomly assigned to different size classes from kindergarten through third grade. Statistical methods are used to adjust for nonrandom attrition and transitions between classes. The main conclusions are (1) on average
On the algorithmic implementation of multiclass kernelbased vector machines
 Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract

Cited by 559 (13 self)
 Add to MetaCart
objective function. Unlike most of previous approaches which typically decompose a multiclass problem into multiple independent binary classification tasks, our notion of margin yields a direct method for training multiclass predictors. By using the dual of the optimization problem we are able
Approximation by Superpositions of a Sigmoidal Function
, 1989
"... In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate fun ..."
Abstract

Cited by 1248 (2 self)
 Add to MetaCart
function. Our results settle an open question about representability in the class of single bidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any
Dynamic Conditional Correlation: A simple class of multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.
 Journal of Business & Economic Statistics
, 2002
"... Abstract Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models ..."
Abstract

Cited by 711 (17 self)
 Add to MetaCart
Abstract Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 474 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 1000 (13 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm
 Machine Learning
, 1988
"... learning Boolean functions, linearthreshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each ex ..."
Abstract

Cited by 773 (5 self)
 Add to MetaCart
learning Boolean functions, linearthreshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each
The Askeyscheme of hypergeometric orthogonal polynomials and its qanalogue
, 1998
"... We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a qanalogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order differenti ..."
Abstract

Cited by 578 (6 self)
 Add to MetaCart
differential or difference equation, the forward and backward shift operator, the Rodriguestype formula and generating functions of all classes of orthogonal polynomials in this scheme. In chapter 2 we give the limit relations between different classes of orthogonal polynomials listed in the Askey
Coverage Control for Mobile Sensing Networks
, 2002
"... This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functio ..."
Abstract

Cited by 582 (49 self)
 Add to MetaCart
This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility
Results 1  10
of
51,075