Results 1 - 10
of
75,337
Depth first search and linear graph algorithms
- SIAM JOURNAL ON COMPUTING
, 1972
"... The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and ar algorithm for finding the biconnected components of an undirect ..."
Abstract
-
Cited by 1406 (19 self)
- Add to MetaCart
The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and ar algorithm for finding the biconnected components
On Spectral Clustering: Analysis and an algorithm
- ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract
-
Cited by 1713 (13 self)
- Add to MetaCart
Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
Optimal Aggregation Algorithms for Middleware
- IN PODS
, 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract
-
Cited by 717 (4 self)
- Add to MetaCart
under that attribute, sorted by grade (highest grade first). There is some monotone aggregation function, or combining rule, such as min or average, that combines the individual grades to obtain an overall grade. To determine the top k objects (that have the best overall grades), the naive algorithm
An Algorithm for Tracking Multiple Targets
- IEEE Transactions on Automatic Control
, 1979
"... Abstract—An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m[~clngreports, and ..."
Abstract
-
Cited by 596 (0 self)
- Add to MetaCart
Abstract—An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract
-
Cited by 727 (18 self)
- Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
Experiments with a New Boosting Algorithm
, 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract
-
Cited by 2213 (20 self)
- Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced
A learning algorithm for Boltzmann machines
- Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract
-
Cited by 584 (13 self)
- Add to MetaCart
problem in o very short time. One kind of computation for which massively porollel networks appear to be well suited is large constraint satisfaction searches, but to use the connections efficiently two conditions must be met: First, a search technique that is suitable for parallel networks must be found
The Small-World Phenomenon: An Algorithmic Perspective
- in Proceedings of the 32nd ACM Symposium on Theory of Computing
, 2000
"... Long a matter of folklore, the “small-world phenomenon ” — the principle that we are all linked by short chains of acquaintances — was inaugurated as an area of experimental study in the social sciences through the pioneering work of Stanley Milgram in the 1960’s. This work was among the first to m ..."
Abstract
-
Cited by 824 (5 self)
- Add to MetaCart
Long a matter of folklore, the “small-world phenomenon ” — the principle that we are all linked by short chains of acquaintances — was inaugurated as an area of experimental study in the social sciences through the pioneering work of Stanley Milgram in the 1960’s. This work was among the first
Analysis and Simulation of a Fair Queueing Algorithm
, 1989
"... We discuss gateway queueing algorithms and their role in controlling congestion in datagram networks. A fair queueing algorithm, based on an earlier suggestion by Nagle, is proposed. Analysis and simulations are used to compare this algorithm to other congestion control schemes. We find. that fair q ..."
Abstract
-
Cited by 1269 (39 self)
- Add to MetaCart
queueing provides several important advantages over the usual first-come-first-serve queueing algorithm: fair allocation of bandwidth, lower delay for sources using less than their full share of bandwidth, and protection from ill-behaved sources.
A Theory of Diagnosis from First Principles
- ARTIFICIAL INTELLIGENCE
, 1987
"... Suppose one is given a description of a system, together with an observation of the system's behaviour which conflicts with the way the system is meant to behave. The diagnostic problem is to determine those components of the system which, when assumed to be functioning abnormally, will explain ..."
Abstract
-
Cited by 1120 (5 self)
- Add to MetaCart
, will explain the discrepancy between the observed and correct system behaviour. We propose a general theory for this problem. The theory requires only that the system be described in a suitable logic. Moreover, there are many such suitable logics, e.g. first-order, temporal, dynamic, etc. As a result
Results 1 - 10
of
75,337