• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 44,776
Next 10 →

Applications Of Circumscription To Formalizing Common Sense Knowledge

by John McCarthy - Artificial Intelligence , 1986
"... We present a new and more symmetric version of the circumscription method of nonmonotonic reasoning first described in (McCarthy 1980) and some applications to formalizing common sense knowledge. The applications in this paper are mostly based on minimizing the abnormality of different aspects o ..."
Abstract - Cited by 532 (12 self) - Add to MetaCart
We present a new and more symmetric version of the circumscription method of nonmonotonic reasoning first described in (McCarthy 1980) and some applications to formalizing common sense knowledge. The applications in this paper are mostly based on minimizing the abnormality of different aspects

Unsupervised Models for Named Entity Classification

by Michael Collins, Yoram Singer - In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora , 1999
"... This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabe ..."
Abstract - Cited by 542 (4 self) - Add to MetaCart
This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use

A classification and comparison framework for software architecture description languages

by Nenad Medvidovic, Richard N. Taylor - IEEE Transactions on Software Engineering , 2000
"... Software architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support architecture-based development. There is, howev ..."
Abstract - Cited by 855 (59 self) - Add to MetaCart
, however, little consensus in the research community on what is an ADL, what aspects of an architecture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the distinction is rarely made between ADLs on one hand and formal specification

SCOP: a structural classification of proteins database for the investigation of sequences and structures.

by Tim J P Hubbard , Bart Ailey , Steven E Brenner , Alexey G Murzin , Cyrus Chothia - J. Mol. Biol. , 1995
"... ABSTRACT The Structural Classification of Proteins (SCOP) database provides a detailed and comprehensive description of the relationships of all known proteins structures. The classification is on hierarchical levels: the first two levels, family and superfamily, describe near and far evolutionary ..."
Abstract - Cited by 1552 (24 self) - Add to MetaCart
ABSTRACT The Structural Classification of Proteins (SCOP) database provides a detailed and comprehensive description of the relationships of all known proteins structures. The classification is on hierarchical levels: the first two levels, family and superfamily, describe near and far evolutionary

Text Classification from Labeled and Unlabeled Documents using EM

by Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, Tom Mitchell - MACHINE LEARNING , 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract - Cited by 1033 (15 self) - Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large

A comparison of event models for Naive Bayes text classification

by Andrew McCallum, Kamal Nigam , 1998
"... Recent work in text classification has used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey ..."
Abstract - Cited by 1025 (26 self) - Add to MetaCart
Recent work in text classification has used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e

Local features and kernels for classification of texture and object categories: a comprehensive study

by J. Zhang, S. Lazebnik, C. Schmid - International Journal of Computer Vision , 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract - Cited by 653 (34 self) - Add to MetaCart
and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ 2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels

The pyramid match kernel: Discriminative classification with sets of image features

by Kristen Grauman, Trevor Darrell - IN ICCV , 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract - Cited by 544 (29 self) - Add to MetaCart
Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve

Ontology Development 101: A Guide to Creating Your First Ontology

by Natalya F. Noy, Deborah L. Mcguinness , 2001
"... In recent years the development of ontologies—explicit formal specifications of the terms in the domain and relations among them (Gruber 1993)—has been moving from the realm of Artificial-Intelligence laboratories to the desktops of domain experts. Ontologies have become common on the World-Wide Web ..."
Abstract - Cited by 830 (5 self) - Add to MetaCart
In recent years the development of ontologies—explicit formal specifications of the terms in the domain and relations among them (Gruber 1993)—has been moving from the realm of Artificial-Intelligence laboratories to the desktops of domain experts. Ontologies have become common on the World

Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents

by Stan Franklin, Art Graesser - In Intelligent Agents III , 1997
"... The advent of software agents gave rise to much discussion of just what such an agent is, and of how they differ from programs in general. Here we propose a formal definition of an autonomous agent which clearly distinguishes a software agent from just any program. We also offer the beginnings of a ..."
Abstract - Cited by 788 (51 self) - Add to MetaCart
The advent of software agents gave rise to much discussion of just what such an agent is, and of how they differ from programs in general. Here we propose a formal definition of an autonomous agent which clearly distinguishes a software agent from just any program. We also offer the beginnings of a
Next 10 →
Results 1 - 10 of 44,776
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University