Results 1  10
of
51,757
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Feature selection based on mutual information: Criteria of maxdependency, maxrelevance, and minredundancy
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2005
"... Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first der ..."
Abstract

Cited by 571 (8 self)
 Add to MetaCart
derive an equivalent form, called minimalredundancymaximalrelevance criterion (mRMR), for firstorder incremental feature selection. Then, we present a twostage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a
LucasKanade 20 Years On: A Unifying Framework: Part 3
 International Journal of Computer Vision
, 2002
"... Since the LucasKanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms hav ..."
Abstract

Cited by 706 (30 self)
 Add to MetaCart
appearance variation with the robust error functions described in Part 2 of this series. We first derive robust versions of the simultaneous and normalization algorithms. Since both of these algorithms are very inefficient, as in Part 2 we derive efficient approximations based on spatial coherence. We end
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 881 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
A semantics of multiple inheritance
 Information and Computation
, 1988
"... There are two major ways of structuring data in programming languages. The first and common one, used for example in Pascal, can be said to derive from standard branches of mathematics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variant types) and func ..."
Abstract

Cited by 528 (9 self)
 Add to MetaCart
There are two major ways of structuring data in programming languages. The first and common one, used for example in Pascal, can be said to derive from standard branches of mathematics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variant types
Statistical Analysis of Cointegrated Vectors
 Journal of Economic Dynamics and Control
, 1988
"... We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimen ..."
Abstract

Cited by 2749 (12 self)
 Add to MetaCart
We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1573 (83 self)
 Add to MetaCart
possible 5pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1713 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
ScaleSpace Theory in Computer Vision
, 1994
"... A basic problem when deriving information from measured data, such as images, originates from the fact that objects in the world, and hence image structures, exist as meaningful entities only over certain ranges of scale. "ScaleSpace Theory in Computer Vision" describes a formal theory fo ..."
Abstract

Cited by 625 (21 self)
 Add to MetaCart
A basic problem when deriving information from measured data, such as images, originates from the fact that objects in the world, and hence image structures, exist as meaningful entities only over certain ranges of scale. "ScaleSpace Theory in Computer Vision" describes a formal theory
Games with Incomplete Information Played by 'Bayesian' Players, IIII
 MANAGEMENT SCIENCE
, 1967
"... The paper develops a new theory for the analysis of games with incomplete information where the players are uncertain about some important parameters of the game situation, such as the payoff functions, the strategies available to various players, the information other players have about the game, e ..."
Abstract

Cited by 787 (2 self)
 Add to MetaCart
probability distributions derived from a certain "basic probability distribution " over the parameters unknown to the various players But later the theory is extended also to cases where the different players' subjective probability distributions fail to satisfy this consistency assumption
Results 1  10
of
51,757