Results 1  10
of
103,650
FINITE DUALITIES, IN PARTICULAR IN FULL HOMOMORPHISMS
"... Abstract. This paper is a survey of several results concerning finite dualities, a special case of the famous Constraint Satisfaction Problem (CSP). In CSP, the point is to characterize a class C of objects X determined by constraints represented by the requirement of the existence of structure pres ..."
Abstract
 Add to MetaCart
Abstract. This paper is a survey of several results concerning finite dualities, a special case of the famous Constraint Satisfaction Problem (CSP). In CSP, the point is to characterize a class C of objects X determined by constraints represented by the requirement of the existence of structure
NEARUNANIMITY POLYMORPHISMS ON STRUCTURES WITH FINITE DUALITY
"... Abstract. We introduce a combinatorial parameter on finite relational trees, called the degree of monstrosity, which measures the smallest possible arity of a nearunanimity polymorphism on a core structure with finite duality. We also show that the core structures which admit all conservative opera ..."
Abstract
 Add to MetaCart
Abstract. We introduce a combinatorial parameter on finite relational trees, called the degree of monstrosity, which measures the smallest possible arity of a nearunanimity polymorphism on a core structure with finite duality. We also show that the core structures which admit all conservative
On infinitefinite duality pairs of directed graphs
"... The (A,D) duality pairs play a crucial role in the theory of general relational structures and in Constraint Satisfaction Problems. The case where both sides are finite is fully characterized. The case where both sides are infinite seems to be very complex. It is also known that no finiteinfinite ..."
Abstract
 Add to MetaCart
The (A,D) duality pairs play a crucial role in the theory of general relational structures and in Constraint Satisfaction Problems. The case where both sides are finite is fully characterized. The case where both sides are infinite seems to be very complex. It is also known that no finite
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
New results in linear filtering and prediction theory
 Trans. ASME, Ser. D, J. Basic Eng
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 585 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Results 1  10
of
103,650