Results 1  10
of
4,760
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
The Theory of Hybrid Automata
, 1996
"... A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied on pur ..."
Abstract

Cited by 680 (13 self)
 Add to MetaCart
on purely discrete state spaces only. In particular, various classes of hybrid automata induce finitary trace equivalence (or similarity, or bisimilarity) relations on an uncountable state space, thus permitting the application of various modelchecking techniques that were originally developed for finite
Concurrent Constraint Programming
, 1993
"... This paper presents a new and very rich class of (concurrent) programming languages, based on the notion of comput.ing with parhal information, and the concommitant notions of consistency and entailment. ’ In this framework, computation emerges from the interaction of concurrently executing agent ..."
Abstract

Cited by 502 (16 self)
 Add to MetaCart
This paper presents a new and very rich class of (concurrent) programming languages, based on the notion of comput.ing with parhal information, and the concommitant notions of consistency and entailment. ’ In this framework, computation emerges from the interaction of concurrently executing agents that communicate by placing, checking and instantiating constraints on shared variables. Such a view of computation is interesting in the context of programming languages because of the ability to represent and manipulate partial information about the domain of discourse, in the context of concurrency because of the use of constraints for communication and control, and in the context of AI because of the availability of simple yet powerful mechanisms for controlling inference, and the promise that very rich representational/programming languages, sharing the same set of abstract properties, may be possible. To reflect this view of computation, [Sar89] develops the cc family of languages. We present here one member of the family, CC(.L,+) (pronounced “cc with Ask and Choose”) which provides the basic operations of blocking Ask and atomic Tell and an algebra of behaviors closed under prefixing, indeterministic choice, interleaving, and hiding, and provides a mutual recursion operator. cc(.L,t) is (intentionally!) very similar to Milner’s CCS, but for the radically different underlying concept of communication, which, in fact, pro’ The class is founded on the notion of “constraint logic programming ” [JL87,Mah87], fundamentally generalizes concurrent logic programming, and is the subject of the first author’s dissertation [Sar89], on which this paper is substantially based.
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 807 (45 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
A Structural Approach to Operational Semantics
, 1981
"... Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be ..."
Abstract

Cited by 1541 (3 self)
 Add to MetaCart
Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be taken as given: Truthvalues This is the set T = ftt; ffg and is ranged over by (the metavariable) t (and we also happily employ for this (and any other) metavariable sub and superscripts to generate other metavariables: t ; t 0 ; t 1k ).
On the Difference between Updating a Knowledge Base and Revising it
"... this paper, we argue that no such set of postulates will be adequate for every application. In particular, we make a fundamental distinction between two kinds of modifications to a knowledge base. The first one, update, consists of bringing the knowledge base up to date when the world described by i ..."
Abstract

Cited by 469 (9 self)
 Add to MetaCart
this paper, we argue that no such set of postulates will be adequate for every application. In particular, we make a fundamental distinction between two kinds of modifications to a knowledge base. The first one, update, consists of bringing the knowledge base up to date when the world described by it changes. For example, most database updates are of this variety, e.g. "increase Joe's salary by 5%". Another example is the incorporation into the knowledge base of changes caused in the world by the actions of a robot (Ginsberg and Smith 1987, Winslett 1988, Winslett 1990) . We show that the AGM postulates must be drastically modified to describe update. The second type of modification, revision, is used when we are obtaining new information about a static world. For example, we may be trying to diagnose a faulty circuit and want to incorporate into the knowledge base the results of successive tests, where newer results may contradict old ones. We claim the AGM postulates describe only revision.
Finitary Fairness
"... Fairness is a mathematical abstraction: in a multiprogramming environment, fairness abstracts the details of admissible ("fair") schedulers; in a distributed environment, fairness abstracts the relative speeds of processors. We argue that the standard definition of fairness often is unnece ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
is unnecessarily weak and can be replaced by the stronger, yet still abstract, notion of finitary fairness. While standard weak fairness requires that no enabled transition is postponed forever, finitary weak fairness requires that for every computation of a system there is an unknown bound k such that no enabled
On The Finitary Bisimulation
, 1995
"... The finitely observable, or finitary, part of bisimulation is a key tool in establishing full abstraction results for denotational semantics for process algebras with respect to bisimulationbased preorders. A bisimulationlike characterization of this relation for arbitrary transition systems is ..."
Abstract
 Add to MetaCart
The finitely observable, or finitary, part of bisimulation is a key tool in establishing full abstraction results for denotational semantics for process algebras with respect to bisimulationbased preorders. A bisimulationlike characterization of this relation for arbitrary transition systems
On the Finitary Bisimulation
 Nils Klarlund, Madhavan Mukund, and Milind Sohoni
, 1995
"... is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS
Results 1  10
of
4,760