• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 80,807
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

A fast learning algorithm for deep belief nets

by Geoffrey E. Hinton, Simon Osindero - Neural Computation , 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract - Cited by 970 (49 self) - Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer

A Fast Learning Algorithm for Rainfall Prediction

by Seema Mahajan, Himanshu Mazumdar
"... A PC based application is developed using 51 years of Indian rainfall data for long range prediction of average rain fall. This learning algorithm iteratively estimates 96 coefficients of a 5th order polynomial in few minutes. Proposed prediction model is based on modelling of time series rainfall d ..."
Abstract - Add to MetaCart
A PC based application is developed using 51 years of Indian rainfall data for long range prediction of average rain fall. This learning algorithm iteratively estimates 96 coefficients of a 5th order polynomial in few minutes. Proposed prediction model is based on modelling of time series rainfall

Constraint-free Graphical Model with Fast Learning Algorithm

by Takabatake Kazuya
"... ar ..."
Abstract - Add to MetaCart
Abstract not found

Fast Effective Rule Induction

by William W. Cohen , 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract - Cited by 1274 (21 self) - Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error

Fast Algorithms for Mining Association Rules

by Rakesh Agrawal, Ramakrishnan Srikant , 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract - Cited by 3612 (15 self) - Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known

A scaled conjugate gradient algorithm for fast supervised learning

by Martin F. Møller - NEURAL NETWORKS , 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract - Cited by 451 (0 self) - Add to MetaCart
A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural

A Fast Algorithm for Particle Simulations

by L. Greengard, V. Rokhlin , 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract - Cited by 1152 (19 self) - Add to MetaCart
this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions

A FAST LEARNING ALGORITHM FOR IMAGE SEGMENTATIONWITH MAX-POOLING CONVOLUTIONAL NETWORKS

by Jonathan Masci? Aless
"... We present a fast algorithm for training MaxPooling Convolutional Networks to segment images. This type of network yields record-breaking performance in a variety of tasks, but is normally trained on a computationally expensive patch-by-patch basis. Our new method processes each training image in a ..."
Abstract - Add to MetaCart
We present a fast algorithm for training MaxPooling Convolutional Networks to segment images. This type of network yields record-breaking performance in a variety of tasks, but is normally trained on a computationally expensive patch-by-patch basis. Our new method processes each training image in a

Gaussian Models and Fast Learning Algorithm for Persistence Analysis of Tracked Video Objects

by Prof Orazio Mirabella, Guoqing Yin, Dietmar Bruckner , 2009
"... file:///E:/HSI/index.htm ..."
Abstract - Add to MetaCart
file:///E:/HSI/index.htm
Next 10 →
Results 1 - 10 of 80,807
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University