Results 1  10
of
35,412
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 578 (16 self)
 Add to MetaCart
algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely
Towards Programming by Examples Properties
, 1991
"... We define a new approach to automatic programming, and express it in the terminology of a nontraditional viewpoint on automatic programming, namely as the "programming by examples & properties" paradigm. The main result of this report is the design of a compiler mechanism synthesizing ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We define a new approach to automatic programming, and express it in the terminology of a nontraditional viewpoint on automatic programming, namely as the "programming by examples & properties" paradigm. The main result of this report is the design of a compiler mechanism
Distributed Snapshots: Determining Global States of Distributed Systems
 ACM TRANSACTIONS ON COMPUTER SYSTEMS
, 1985
"... This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps to s ..."
Abstract

Cited by 1208 (6 self)
 Add to MetaCart
to solve an important class of problems: stable property detection. A stable property is one that persists: once a stable property becomes true it remains true thereafter. Examples of stable properties are “computation has terminated,” “the system is deadlocked” and “all tokens in a token ring have
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3252 (70 self)
 Add to MetaCart
component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
An axiomatic basis for computer programming
 COMMUNICATIONS OF THE ACM
, 1969
"... In this paper an attempt is made to explore the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the elucidation of sets of axioms and rules of inference w ..."
Abstract

Cited by 1754 (4 self)
 Add to MetaCart
which can be used in proofs of the properties of computer programs. Examples are given of such axioms and rules, and a formal proof of a simple theorem is displayed. Finally, it is argued that important advantages, both theoretical and practical, may follow from a pursuance of these topics.
Probabilistic Principal Component Analysis
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 709 (5 self)
 Add to MetaCart
of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach
Text Categorization with Support Vector Machines: Learning with Many Relevant Features
, 1998
"... This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substan ..."
Abstract

Cited by 2303 (9 self)
 Add to MetaCart
This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve
The SPLASH2 programs: Characterization and methodological considerations
 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE
, 1995
"... The SPLASH2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed sharedaddressspace multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH2 programs in terms of fundamental propertie ..."
Abstract

Cited by 1420 (12 self)
 Add to MetaCart
properties and architectural interactions that are important to understand them well. The properties we study include the computational load balance, communication to computation ratio and traffic needs, important working set sizes, and issues related to spatial locality, as well as how these properties
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed sidebyside. Properties of the variance equation are of great interest
Image Quality Assessment: From Error Visibility to Structural Similarity
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2004
"... Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapt ..."
Abstract

Cited by 1499 (114 self)
 Add to MetaCart
Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly
Results 1  10
of
35,412