Results 11  20
of
103,868
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 718 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Efficient Algorithms for Discovering Association Rules
, 1994
"... Association rules are statements of the form "for 90 % of the rows of the relation, if the row has value 1 in the columns in set W , then it has 1 also in column B". Agrawal, Imielinski, and Swami introduced the problem of mining association rules from large collections of data, and gave a ..."
Abstract

Cited by 237 (11 self)
 Add to MetaCart
course enrollment database indicate that the method outperforms the previous one by a factor of 5. We also show that sampling is in general a very efficient way of finding such rules. Keywords: association rules, covering sets, algorithms, sampling. 1 Introduction Data mining (database mining, knowledge
An Efficient ContextFree Parsing Algorithm
, 1970
"... A parsing algorithm which seems to be the most efficient general contextfree algorithm known is described. It is similar to both Knuth's LR(k) algorithm and the familiar topdown algorithm. It has a time bound proportional to n 3 (where n is the length of the string being parsed) in general; i ..."
Abstract

Cited by 798 (0 self)
 Add to MetaCart
A parsing algorithm which seems to be the most efficient general contextfree algorithm known is described. It is similar to both Knuth's LR(k) algorithm and the familiar topdown algorithm. It has a time bound proportional to n 3 (where n is the length of the string being parsed) in general
Efficient Algorithms for Sorting and Synchronization
, 2000
"... This thesis presents efficient algorithms for internal and external parallel sorting and remote data update. The sorting algorithms approach the problem by concentrating first on highly efficient but incorrect algorithms followed by a cleanup phase that completes the sort. The remote data update alg ..."
Abstract

Cited by 132 (0 self)
 Add to MetaCart
This thesis presents efficient algorithms for internal and external parallel sorting and remote data update. The sorting algorithms approach the problem by concentrating first on highly efficient but incorrect algorithms followed by a cleanup phase that completes the sort. The remote data update
Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms
 IEEE Transactions on Image Processing
, 1993
"... Morphological reconstruction is part of a set of image operators often referred to as geodesic. In the binary case, reconstruction simply extracts the connected components of a binary image I (the mask) which are \marked " by a (binary) image J contained in I. This transformation can be ext ..."
Abstract

Cited by 336 (3 self)
 Add to MetaCart
this situation, a new algorithm is introduced, which is based on the notion of regional maxima and makes use of breadthrst image scannings implemented via a queue of pixels. Its combination with the sequential technique results in a hybrid grayscale reconstruction algorithm which is an order of magnitude faster
CURE: An Efficient Clustering Algorithm for Large Data sets
 Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract

Cited by 722 (5 self)
 Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 560 (0 self)
 Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps
Efficient Algorithms for Mining Outliers from Large Data Sets
, 2000
"... In this paper, we propose a novel formulation for distancebased outliers that is based on the distance of a point from its k th nearest neighbor. We rank each point on the basis of its distance to its k th nearest neighbor and declare the top n points in this ranking to be outliers. In addition ..."
Abstract

Cited by 322 (0 self)
 Add to MetaCart
. In addition to developing relatively straightforward solutions to finding such outliers based on the classical nestedloop join and index join algorithms, we develop a highly efficient partitionbased algorithm for mining outliers. This algorithm first partitions the input data set into disjoint subsets
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 114 (10 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear
Efficient sparse coding algorithms
 In NIPS
, 2007
"... Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that capture higherlevel features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we ..."
Abstract

Cited by 445 (14 self)
 Add to MetaCart
present efficient sparse coding algorithms that are based on iteratively solving two convex optimization problems: an L1regularized least squares problem and an L2constrained least squares problem. We propose novel algorithms to solve both of these optimization problems. Our algorithms result in a
Results 11  20
of
103,868